

(12) United States Patent Seo et al.

(10) **Patent No.:**

US 9,276,228 B2

(45) **Date of Patent:**

Mar. 1, 2016

(54) LIGHT-EMITTING ELEMENT

(71) Applicant: Semiconductor Energy Laboratory

Co., Ltd., Kanagawa-ken (JP)

Inventors: Satoshi Seo, Kanagawa (JP); Hiromi

Seo, Kanagawa (JP); Tatsuyoshi Takahashi, Kanagawa (JP)

Assignee: Semiconductor Energy Laboratory

Co., Ltd. (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 13/957,612

(22)Filed: Aug. 2, 2013

(65)**Prior Publication Data**

US 2014/0034930 A1 Feb. 6, 2014

(30)Foreign Application Priority Data

Aug. 3, 2012 (JP) 2012-172830

(51) Int. Cl.

H01L 33/00 (2010.01)H01L 51/50 (2006.01)

H01L 51/00 (2006.01)

(52) U.S. Cl.

CPC H01L 51/5016 (2013.01); H01L 51/0072 (2013.01); H01L 51/0079 (2013.01); H01L 51/5004 (2013.01); H01L 51/5012 (2013.01); H01L 2251/552 (2013.01)

Field of Classification Search

CPC H01L 51/00; H01L 2251/00; H01L 27/00; H01L 51/5012; H01L 2251/552; H01L 51/0059; H01L 51/006; H01L 51/0067; H01L 51/0072; H01L 51/5004

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

7,572,522 B2 8/2009 Seo et al. 7,943,925 B2 5/2011 Yamazaki (Continued)

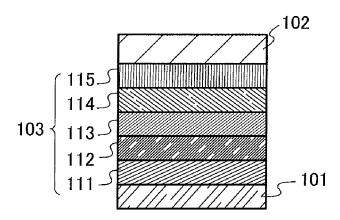
FOREIGN PATENT DOCUMENTS

9/2011 EP 2 363 398 A1 EP2 366 753 A1 9/2011

(Continued)

OTHER PUBLICATIONS

Nakagawa et al. "Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure", RSC Publishing Chem.Commun., 2012, 48, pp. 9580-9582 Apr. 17, 2012.*


(Continued)

Primary Examiner — Telly Green (74) Attorney, Agent, or Firm — Husch Blackwell LLP

ABSTRACT (57)

To provide a light-emitting element which uses a fluorescent material as a light-emitting substance and has higher luminous efficiency. To provide a light-emitting element which includes a mixture of a thermally activated delayed fluorescent substance and a fluorescent material. By making the emission spectrum of the thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material in an S₁ level of the fluorescent material, energy at an S₁ level of the thermally activated delayed fluorescent substance can be transferred to the S_1 of the fluorescent material. Alternatively, it is also possible that the S_1 of the thermally activated delayed fluorescent substance is generated from part of the energy of a T₁ level of the thermally activated delayed fluorescent substance, and is transferred to the S₁ of the fluorescent material.

18 Claims, 28 Drawing Sheets

(56) References Cited		nces Cited	JP 2014-022666 A 2/2014 KR 10-2011-0099645 9/2011
U.S. PATENT DOCUMENTS			KR 10-2011-0099645 9/2011 WO WO 00/70655 A2 11/2000 WO WO 2011/139055 A2 11/2011
8,247,086 B2		Inoue et al.	WO WO 2012/050002 A1 4/2012 WO WO 2012/133188 A1 10/2012
8,476,823 B2*		Kuma B82Y 10/00 313/504	WO WO 2012/133188 A1 10/2012 WO WO 2013/081088 A1 6/2013
8,643,268 B2 * 8,729,310 B2		Ogiwara et al 313/504 Osaka et al.	OTHER PUBLICATIONS
8,766,249 B2	7/2014	Sawada et al.	Yokoyama et al. "Dual efficiency enhancement by delayed fluores-
2005/0048310 A1 2006/0134464 A1		Cocchi et al. Nariyuki	cence and dipole orientation in high-efficiency fluorescent organic
2006/0228577 A1	10/2006	Nagara	ligh emitting diodes" Sep. 22, 2011, AIP Publishing, Applied Physics
2007/0244320 A1 2008/0160345 A1		Inoue et al. Inoue et al.	Letters 99, pp. 1-4.* "Thermally Activated Delayed Fluorescence and its Application for
2008/0286604 A1	11/2008	Inoue et al.	OLED." T. Nakagawa, SY. Ku, KT. Wong, G. Méhes, C. Adachi,
2009/0166563 A1* 2010/0052527 A1		Yokoyama et al 250/492.1 Ikeda et al.	PHOENICS Feb. 21, 2012.* Gu, G. et al., "Transparent Organic Light Emitting Devices," Applied
2010/0145044 A1	6/2010	Inoue et al.	Physics Letters, vol. 68, No. 19, May 6, 1996, pp. 2606-2608.
2010/0301318 A1*	12/2010	Kuma B82Y 10/00 257/40	Itano, K. et al, "Exciplex Formation at the Organic Solid-State Interface: Yellow Emission in Organic Light-Emitting Diodes Using
2011/0001146 A1		Yamazaki et al.	Green-Fluorescent tris(8-quinolinolato)aluminum and Hole-Trans-
2011/0210316 A1 2011/0215714 A1		Kadoma et al. Seo et al.	porting Molecular Materials with Low Ionization Potentials," Applied Physics Letters, vol. 72, No. 6, Feb. 9, 1998, pp. 636-638.
2012/0098417 A1	4/2012	Inoue et al.	Baldo, M.A. et al., "Highly Efficient Phosphorescent Emission from
2012/0205632 A1 2012/0205687 A1		Shitagaki et al. Yamazaki et al.	Organic Electroluminescent Devices," Nature, vol. 395, Sep. 10, 1998, pp. 151-154.
2012/0206035 A1	8/2012	Shitagaki et al.	Baldo, M.A. et al, "Very High-Efficiency Green Organic Light-Emit-
2012/0217486 A1 2012/0217487 A1*		Takemura et al. Yamazaki et al 257/40	ting Devices Based on Electrophosphorescence," Applied Physics
2012/0242219 A1		Seo et al. Yamazaki et al.	Letters, vol. 75, No. 1, Jul. 5, 1999, pp. 4-6. Choong, VE. et al, "Organic Light-Emitting Diodes With a Bipolar
2012/0248421 A1 2012/0248968 A1*		Ogiwara et al 313/504	Transport Layer," Applied Physics Letters, vol. 75, No. 2, Jul. 12,
2012/0256535 A1 2013/0048964 A1		Seo et al. Takeda et al.	1999, pp. 172-174. Adachi, C. et al., "Nearly 100% Internal Phosphorescence Efficiency
2013/0056720 A1	3/2013	Kim et al.	in an Organic Light Emitting Device," Journal of Applied Physics,
2013/0207088 A1 2013/0270531 A1*	8/2013	Seo et al 257/40	vol. 90, No. 10, Nov. 15, 2001, pp. 5048-5051. Baldo, M.A. et al., "Prospects for Electrically Pumped Organic
2013/0277653 A1*	10/2013	Osaka et al 257/40	Lasers," Physical Review B, vol. 66, Jul. 1, 2002, pp. 035321-1-
2013/0277655 A1* 2013/0277656 A1*		Seo et al	035321-16.
2013/0292656 A1*	11/2013	Seo et al 257/40	Markham, J.P.J. et al., "High-Efficiency Green Phosphorescence from Spin-Coated Single-Layer Dendrimer Light-Emitting Diodes,"
2013/0306945 A1* 2014/0014930 A1*		Seo	Applied Physics Letters, vol. 80, No. 15, Apr. 15, 2002, pp. 2645-
2014/0034925 A1*	2/2014	Osaka et al 257/40	2647. Fujita, M. et al., Reduction of Operating Voltage in Organic Light-
2014/0034926 A1* 2014/0034927 A1*		Matsubara et al	Emitting Diode by Corrugated Photonic Crystal Structure, Applied
2014/0034930 A1*	2/2014	Seo et al 257/40	Physics Letters, vol. 85, No. 23, Dec. 6, 2004, pp. 5769-5771. Kondakova, M.E. et al., "High-Efficiency, Low-Voltage Phosphores-
2014/0034931 A1* 2014/0034932 A1*		Inoue et al	cent Organic Light-Emitting Diode Devices with Mixed Host," Jour-
2014/0061604 A1*	3/2014	Seo et al 257/40	nal of Applied Physics, vol. 104, 2008, pp. 094501-1-094501-17.
2014/0103329 A1	4/2014	Ogiwara et al.	Seo, J.H., et al., "Efficient Blue-Green Organic Light-Emitting Diodes Based on Heteroleptic tris-Cyclometalated Iridium(III) Com-
FOREIGN PATENT DOCUMENTS			plexes," Thin Solid Films, vol. 517, No. 5, 2009, pp. 1807-1810. Yoshida, K. et al., "High Efficiency Reverse Intersystem Crossing of
EP 2 568	3 030 A2	3/2013	Exciplex States," The 71st Autumn Meeting of the Japan Society of
EP 2 628	3 743 A1	8/2013	Applied Physics and Related Societies, 2010, p. 319, The Japan
	0 681 A1 5972 A	1/2014 3/1995	Society of Applied Physics. Goushi, K. et al., "Delayed Fluorescence Organic Light-Emitting
JP 2004-241374		8/2004	Diodes Based on Exciplex," The 59th Spring Meeting of the Japan
JP 2011-088887 A		1/2006 5/2011	Society of Applied Physics and Related Societies Preliminary Drafts, 2012, p. 251.
JP 2011-201869 JP 2011-204673		10/2011 10/2011	Yang, CC. et al., "Excited State Luminescence of Multi-(5-phenyl-
JP 2011-21	3643 A	10/2011	1,3,4-oxadiazo-2-yl) benzenes in an Electron-Donating Matrix:
JP 2012- JP 2012-04		1/2012 3/2012	Exciplex or Electroplex?," Journal of Physical Chemistry B, Jan. 21, 2010, vol. 114, No. 2, pp. 756-768.
JP 2013-11	6975 A	6/2013	
JP 2013-53	3604	8/2013	* cited by examiner

^{*} cited by examiner

FIG. 1A

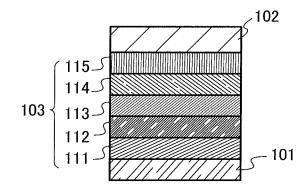


FIG. 1B

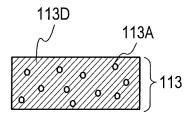


FIG. 1C

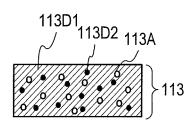
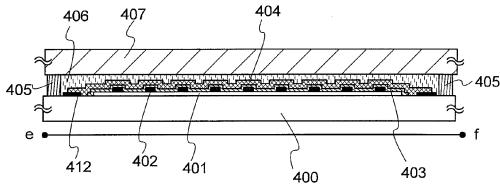
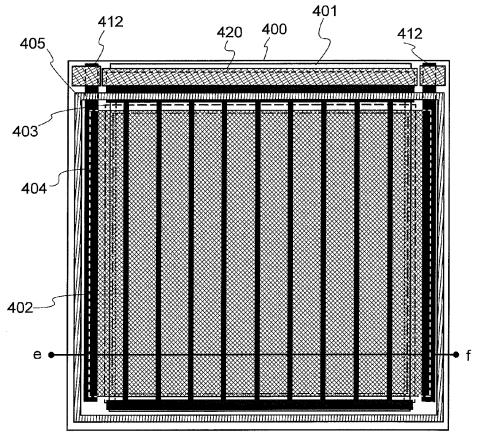
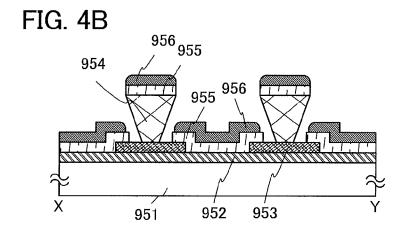
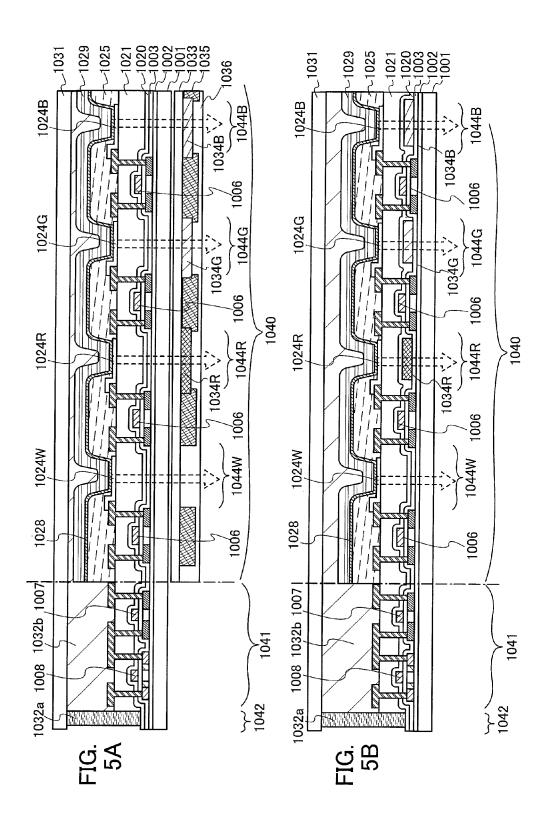


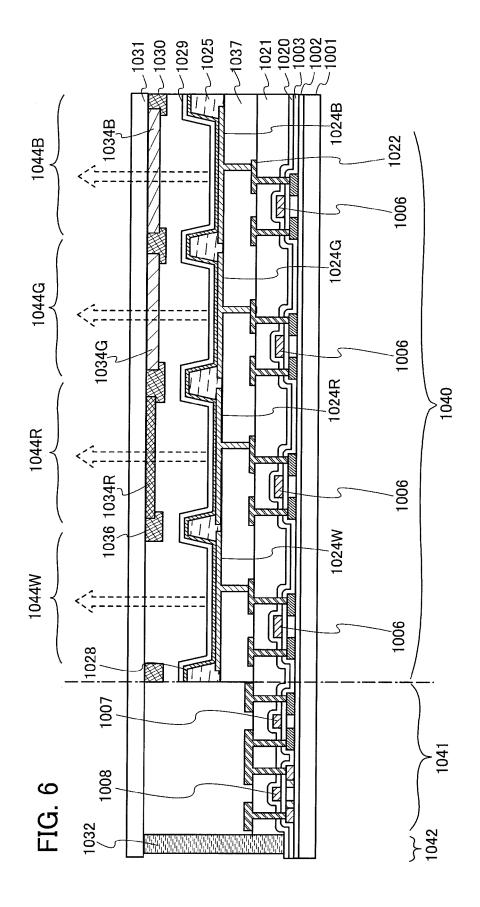
FIG. 2

TD SD SA ...

101 113D 113A 113

FIG. 3A 406


FIG. 3B

956
955
954
953
952
951

7404

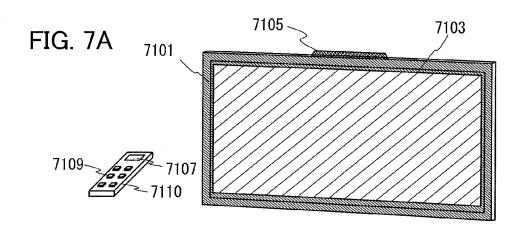


FIG. 7C

7406

FIG. 7B 7202 7203 7204

7302

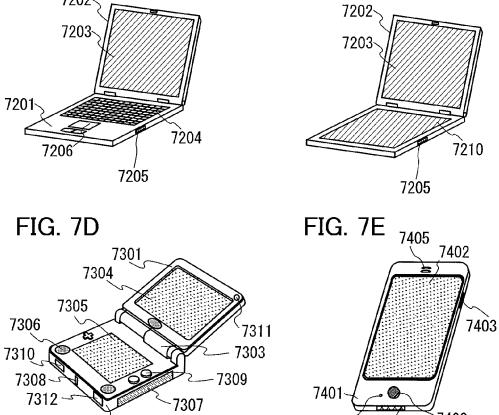
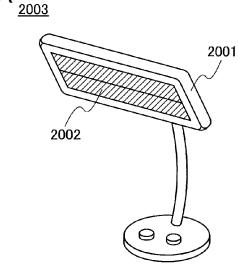
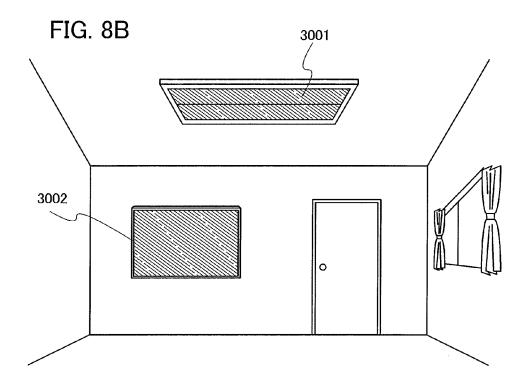
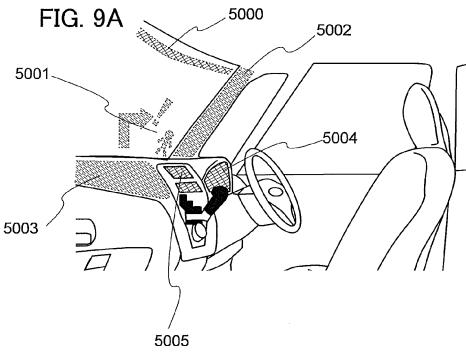
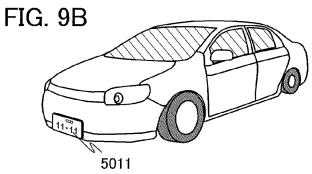






FIG. 8A ₂₀₀₃

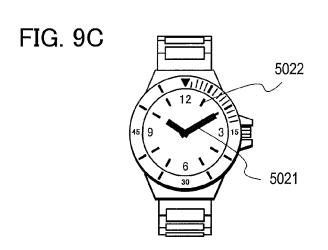


FIG. 10A

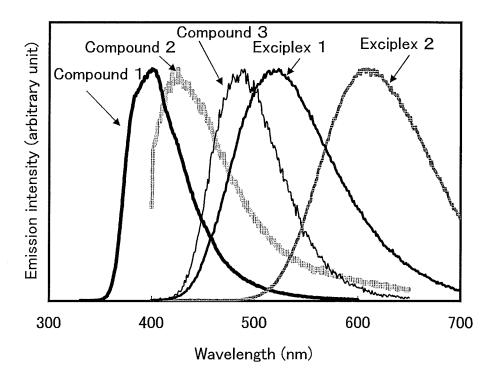


FIG. 10B

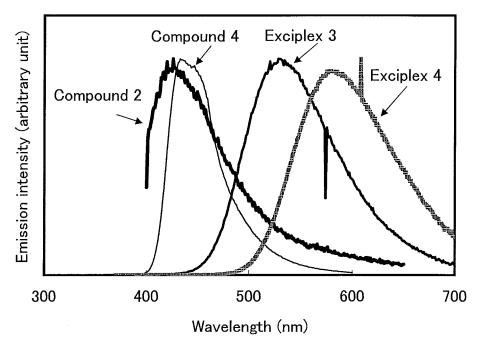


FIG. 11

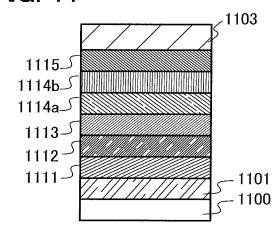


FIG. 12

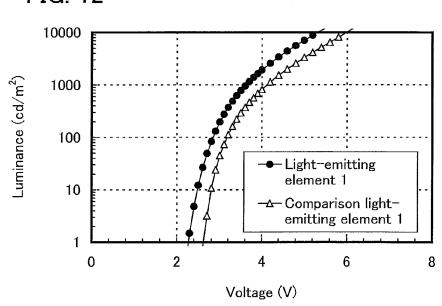


FIG. 13

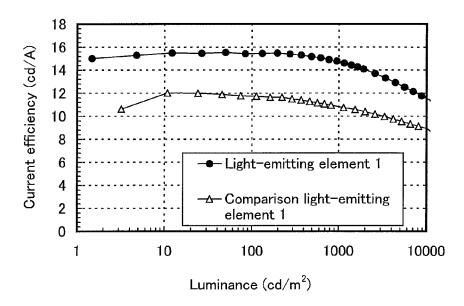


FIG. 14

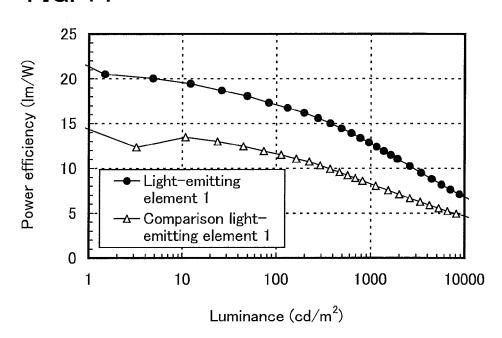


FIG. 15

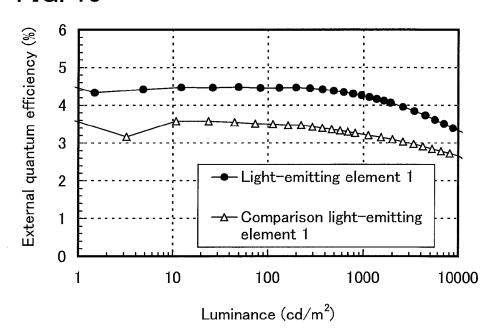


FIG. 16

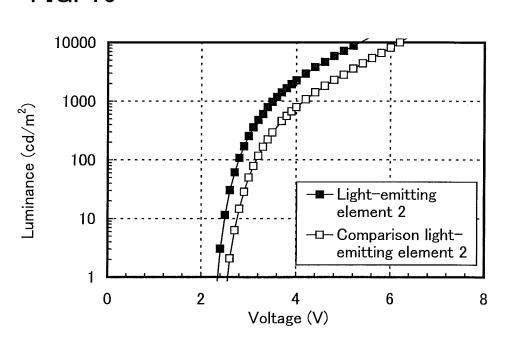


FIG. 17

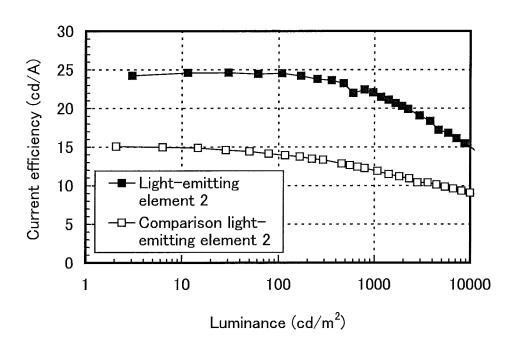


FIG. 18

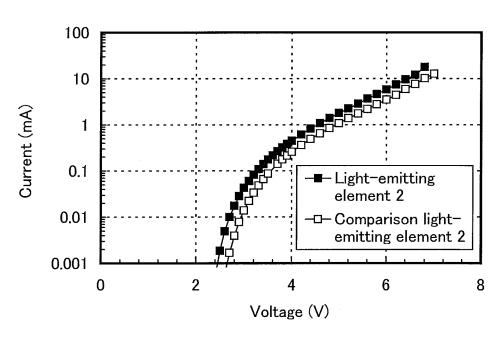


FIG. 19

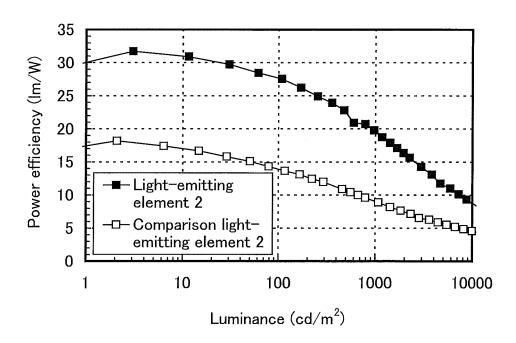


FIG. 20

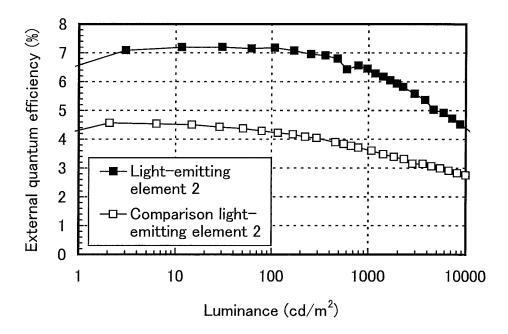


FIG. 21

Augustian Visual Light-emitting element 2

Comparison light-emitting element 2

mitting element 2

350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

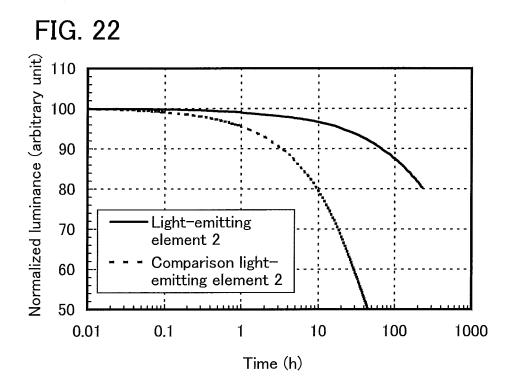


FIG. 24

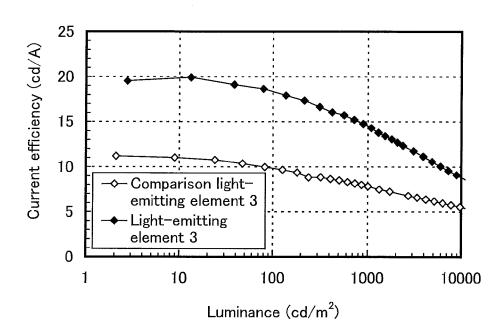


FIG. 25

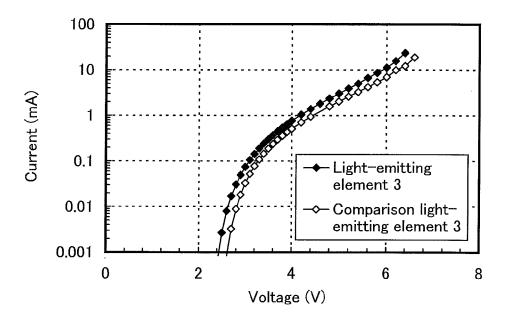


FIG. 26

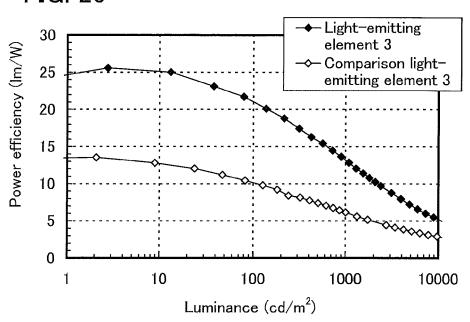


FIG. 27

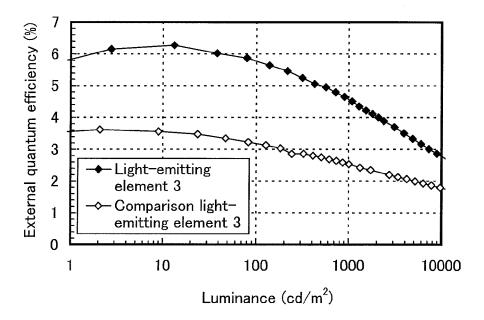
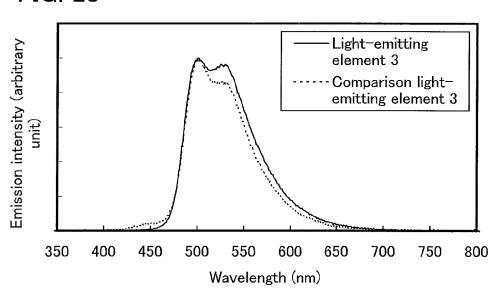




FIG. 28

Voltage (V)

FIG. 31

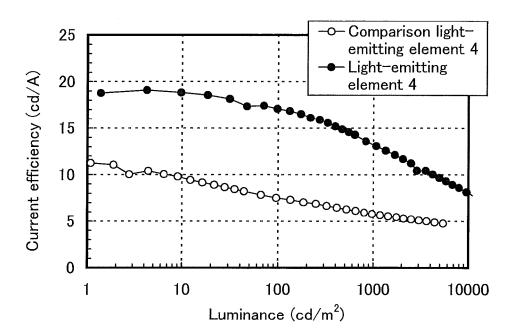


FIG. 32

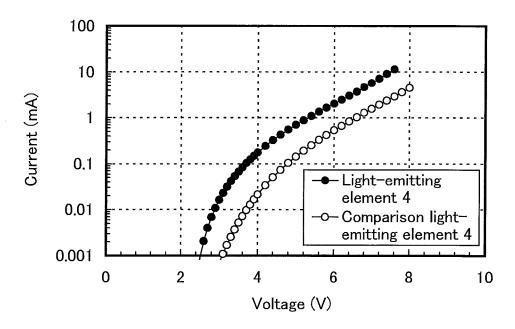


FIG. 33

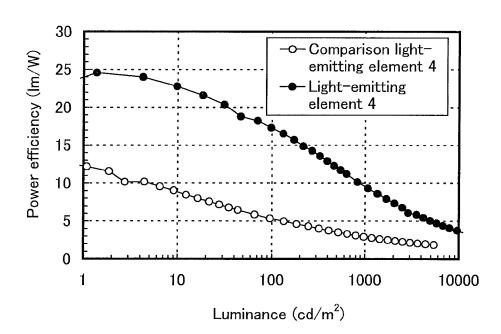


FIG. 34

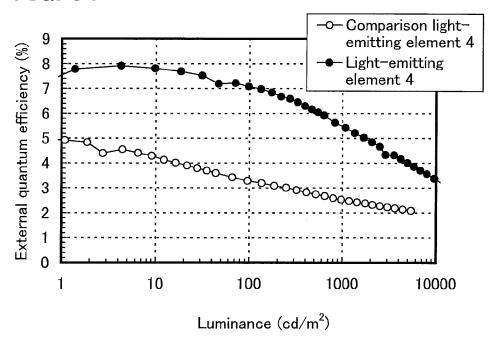


FIG. 35

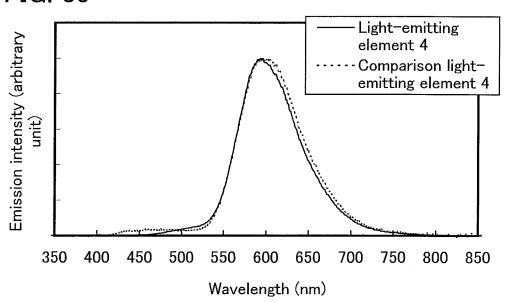


FIG. 36

Time (h)

1 LIGHT-EMITTING ELEMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a light-emitting element which includes an organic compound as a light-emitting sub-

2. Description of the Related Art

In recent years, research and development have been extensively conducted on light-emitting elements using electroluminescence (EL). In a basic structure of such a light-emitting element, a layer containing a light-emitting substance (an EL layer) is interposed between a pair of electrodes. By applying 15 voltage to this element, light emission from the light-emitting substance can be obtained.

Since such a light-emitting element is of self-light-emitting type, the light-emitting element has advantages over a liquid crystal display in that visibility of pixels is high, backlight is 20 not required, and so on and is therefore suitable as flat panel display elements. In addition, it is also a great advantage that a display including such a light-emitting element can be manufactured as a thin and lightweight display. Furthermore, very high speed response is also one of the features of such an 25 element.

Since a light-emitting layer of such a light-emitting element can be formed in the form of a film, planar light emission can be achieved. Therefore, large-area light sources can be easily formed. This feature is difficult to obtain with point light sources typified by incandescent lamps and LEDs or linear light sources typified by fluorescent lamps. Thus, lightemitting elements also have great potential as planar light sources which can be applied to lighting devices and the like. 35

In the case of an organic EL element in which an organic compound is used as the light-emitting substance and an EL layer containing the light-emitting substance is provided between a pair of electrodes, application of a voltage between cathode and holes from the anode into the EL layer having a light-emitting property, and thus a current flows. By recombination of the injected electrons and holes, the organic compound having a light-emitting property is put in an excited state to provide light emission.

The excited state of an organic compound can be a singlet excited state or a triplet excited state, and light emission from the singlet excited state (S_1) is referred to as fluorescence, and light emission from the triplet excited state (T_1) is referred to as phosphorescence. The statistical generation ratio of the 50 excited states in the light-emitting element is considered to be $S_1:T_1=1:3$. Therefore, a light-emitting element including a phosphorescent compound capable of converting the triplet excited state into light emission has been actively developed 55 in recent years.

However, most phosphorescent compounds currently available are complexes containing a rare metal such as iridium as a central metal, which raises concern about the cost and the stability of supply.

Therefore, as materials which do not contain a rare metal and can convert part of a triplet excited state into light emission, materials emitting delayed fluorescence have been studied. In the materials emitting delayed fluorescence, a singlet excited state is generated from a triplet excited state by reverse intersystem crossing, and the singlet excited state is converted into light emission.

2

Patent Documents 1 and 2 disclose a material emitting thermally activated delayed fluorescence (TADF).

REFERENCE

Patent Document

[Patent Document 1] Japanese Published Patent Application No. 2004-241374

[Patent Document 2] Japanese Published Patent Application No. 2006-24830

SUMMARY OF THE INVENTION

In order to increase the luminous efficiency of the lightemitting element, it is important not only to generate a singlet excited state from a triplet excited state but also to obtain light emission efficiently from the singlet excited state, that is, to increase the fluorescence quantum efficiency. Thus, in a structure in the above patent document 1 or the like, in order to further increase the luminous efficiency, a material which emits TADF and has high fluorescence quantum yield is needed; however, it is very difficult to make such a material which satisfies the two conditions at the same time.

In view of the above, an object of one embodiment of the present invention is to provide a light-emitting element having higher luminous efficiency in which a material which emits fluorescence (hereinafter, referred to as a fluorescent material) is used as a light-emitting substance.

In order to achieve the object, one embodiment of the present invention includes a material for generating a singlet excited state from a triplet excited state and another material for obtaining light emission efficiently from the singlet excited state.

Specifically, for a light-emitting layer, a material which can generate a singlet excited state from a triplet excited state and another material which can obtain light emission efficiently from the singlet excited state are mixed to be used.

As the material which can generate a singlet excited state the pair of electrodes causes injection of electrons from the 40 from a triplet excited state, a thermally activated delayed fluorescent substance is used.

> In this specification and the like, a thermally activated delayed fluorescent substance is a material which can generate a singlet excited state from a triplet excited state by reverse intersystem crossing and thermal activation. The thermally activated delayed fluorescent substance may include a material which can generate a singlet excited state by itself from a triplet excited state by reverse intersystem crossing, for example, a material which emits TADF. Alternatively, the thermally activated delayed fluorescent substance may include a combination of two kinds of materials which form an exciplex.

> It also can be said that the thermally activated delayed fluorescent substance is a material of which a triplet excited state is close to a singlet excited state. Specifically, a material in which the difference between the levels of the triplet excited state and the singlet excited state is 0.2 eV or less is preferably used. That is, it is preferable that the difference between the levels of the triplet excited state and the singlet excited state be 0.2 eV or less in a material which can generate a singlet excited state by itself from a triplet excited state by reverse intersystem crossing, for example, a material which emits TADF, or it is preferable that the difference between the levels of the triplet excited state and the singlet excited state be 0.2 eV or less in an exciplex.

As a material which can obtain light emission efficiently from the singlet excited state, a known fluorescent material is

used. In particular, a material having high fluorescence quantum yield, for example, a material whose fluorescence quantum yield is 50% or more, is preferably used.

As described above, one embodiment of the present invention provides a light-emitting element in which a thermally activated delayed fluorescent substance is used for an energy donor and a fluorescent material is used for an energy acceptor. With such a structure, by making the emission spectrum of thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in 10 absorption by the fluorescent material in a singlet excited state, energy of a singlet excited state of the thermally activated delayed fluorescent substance can be transferred to the singlet excited state of the fluorescent material. Alternatively, it is also possible that a singlet excited state of the thermally activated delayed fluorescent substance is generated from part of the energy of a triplet excited state of the thermally activated delayed fluorescent substance, and is transferred to the singlet excited state of the fluorescent material.

For example, in the case of a structure using a material 20 which emits TADF for an energy acceptor, a material which emits TADF and has high fluorescence quantum yield is needed in order to increase luminous efficiency. However, with the above-described structure in which a thermally activated delayed fluorescent substance is used for an energy 25 donor, a material having high fluorescence quantum yield can be selected for an energy acceptor with or without TADF.

Thus, the singlet excited state of the thermally activated delayed fluorescent substance and the singlet excited state of the thermally activated delayed fluorescent substance which 30 is generated from part of the energy of the triplet excited state of the thermally activated delayed fluorescent substance can be converted into light emission more efficiently through the singlet excited state of the fluorescent material. Accordingly, a light-emitting element having high luminous efficiency can 35

One embodiment of the present invention is a light-emitting element which includes a pair of electrodes and an EL layer sandwiched between the pair of electrodes. The EL layer includes at least a light-emitting layer. The light-emit- 40 ting layer includes at least a thermally activated delayed fluorescent substance and a fluorescent material.

In the above light-emitting element, it is preferable that thermally activated delayed fluorescent substance include a first organic compound and a second organic compound 45 which form an exciplex.

In the above light-emitting element, it is preferable that light emission of the thermally activated delayed fluorescent substance be overlapped with an absorption band on the lowest energy side of the fluorescent material.

In the above light-emitting element, it is preferable that the difference in equivalent energy value between the peak wavelength in the absorption band on the lowest energy side of the fluorescent material and the peak wavelength of light emission of the thermally activated delayed fluorescent substance 55 be 0.2 eV or less.

In the above light-emitting element, it is preferable that the difference between the peak wavelength of light emission of the thermally activated delayed fluorescent substance and the be 30 nm or less.

In the above light-emitting element, it is preferable that one of the first organic compound and the second organic compound be a material having an electron-transport property and the other be a material having a hole-transport property.

In the above light-emitting element, it is preferable that one of the first organic compound and the second organic com-

pound be a π -electron deficient heteroaromatic compound and the other be a π -electron rich heteroaromatic compound or an aromatic amine compound.

According to one embodiment of the present invention, in a light-emitting element using a fluorescent material as a light-emitting substance, higher luminous efficiency can be obtained.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1C are conceptual diagrams of light-emitting elements.

FIG. 2 illustrates energy transfer in a light-emitting layer. FIGS. 3A and 3B are schematic diagrams of a lighting

FIGS. 4A and 4B are schematic diagrams of a passive matrix light-emitting device.

FIGS. 5A and 5B are schematic diagrams of active matrix light-emitting devices.

FIG. 6 is a schematic diagram of an active matrix lightemitting device.

FIGS. 7A to 7E illustrate electronic devices.

FIGS. 8A and 8B illustrate lighting devices.

FIGS. 9A to 9C illustrate in-vehicle display devices and electronic devices.

FIGS. 10A and 10B show emission wavelengths of exciplexes.

FIG. 11 shows a structure of a light-emitting element 1 and a comparison light-emitting element 1 of Example 1.

FIG. 12 shows voltage-luminance characteristics of the light-emitting element 1 and the comparison light-emitting element 1 of Example 1.

FIG. 13 shows luminance-current efficiency characteristics of the light-emitting element 1 and the comparison lightemitting element 1 of Example 1.

FIG. 14 shows luminance-power efficiency characteristics of the light-emitting element 1 and the comparison lightemitting element 1 of Example 1.

FIG. 15 shows luminance-external quantum efficiency characteristics of the light-emitting element 1 and the comparison light-emitting element 1 of Example 1.

FIG. 16 shows voltage-luminance characteristics of a lightemitting element 2 and a comparison light-emitting element 2 of Example 2.

FIG. 17 shows luminance-current efficiency characteristics of the light-emitting element 2 and the comparison lightemitting element 2 of Example 2.

FIG. 18 shows voltage-current characteristics of the lightemitting element 2 and the comparison light-emitting element 2 of Example 2.

FIG. 19 shows luminance-power efficiency characteristics of the light-emitting element 2 and the comparison lightemitting element 2 of Example 2.

FIG. 20 shows luminance-external quantum efficiency characteristics of the light-emitting element 2 and the comparison light-emitting element 2 of Example 2.

FIG. 21 shows emission spectra of the light-emitting elepeak wavelength of light emission of the fluorescent material 60 ment 2 and the comparison light-emitting element 2 of Example 2.

FIG. 22 shows results obtained by reliability tests of the light-emitting element 2 and the comparison light-emitting element 2 of Example 2.

FIG. 23 shows voltage-luminance characteristics of a lightemitting element 3 and a comparison light-emitting element 3 of Example 3.

FIG. 24 shows luminance-current efficiency characteristics of the light-emitting element 3 and the comparison lightemitting element 3 of Example 3.

FIG. 25 shows voltage-current characteristics of the lightemitting element 3 and the comparison light-emitting element 3 of Example 3.

FIG. 26 shows luminance-power efficiency characteristics of the light-emitting element 3 and the comparison lightemitting element 3 of Example 3.

FIG. 27 shows luminance-external quantum efficiency 10 characteristics of the light-emitting element 3 and the comparison light-emitting element 3 of Example 3.

FIG. 28 shows an emission spectrum of the light-emitting element 3 and the comparison light-emitting element 3 of

FIG. 29 shows results obtained by reliability tests of the light-emitting element 3 and the comparison light-emitting element 3 of Example 3.

FIG. 30 shows voltage-luminance characteristics of a lightemitting element 4 and a comparison light-emitting element 4 20 of Example 4.

FIG. 31 shows luminance-current efficiency characteristics of the light-emitting element 4 and the comparison lightemitting element 4 of Example 4.

FIG. 32 shows voltage-current characteristics of the light- 25 emitting element 4 and the comparison light-emitting element 4 of Example 4.

FIG. 33 shows luminance-power efficiency characteristics of the light-emitting element 4 and the comparison lightemitting element 4 of Example 4.

FIG. 34 shows luminance-external quantum efficiency characteristics of the light-emitting element 4 and the comparison light-emitting element 4 of Example 4.

FIG. 35 shows emission spectra of the light-emitting element 4 and the comparison light-emitting element 4 of 35 delayed fluorescent substance is a triplet excited state Example 4.

FIG. 36 shows results obtained by reliability tests of the light-emitting element 4 and the comparison light-emitting element 4 of Example 4.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention are described below with reference to the drawings. Note that the present invention is not limited to the following description, and it is easily 45 understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description in the following embodiments.

Embodiment 1

In a light-emitting element in which a thermally activated delayed fluorescent substance and a fluorescent material are 55 mixed to be used, light emission occurs through the following energetic process.

(1) where an electron and a hole are recombined in a fluorescent material, and the fluorescent material is excited (direct recombination process)

60

(1-1) where the fluorescent material emits fluorescence when the excited state of the fluorescent material is a singlet excited state

(1-2) where thermal deactivation occurs when the excited state of the fluorescent material is a triplet excited state

In the direct recombination process in (1), when the fluorescence quantum efficiency is high, high luminous efficiency

can be obtained. The level of the singlet excited state of the thermally activated delayed fluorescent substance is preferably higher than the level of the singlet excited state of the fluorescent material.

(2) where an electron and a hole are recombined in a thermally activated delayed fluorescent substance and the thermally activated delayed fluorescent substance is put in an excited state (energy transfer process)

(2-1) when the excited state of the thermally activated delayed fluorescent substance is a singlet excited state

In the case where the level of the singlet excited state of the thermally activated delayed fluorescent substance is higher than the level of the singlet excited state of the fluorescent material, excitation energy is transferred from the thermally activated delayed fluorescent substance to the fluorescent material, and thus, the fluorescent material is put in a singlet excited state. The fluorescent material in the singlet excited state emits fluorescence. Note that since direct transition of the fluorescent material from a singlet ground state to a triplet excited state is forbidden, energy transfer from the level of the singlet excited state of the thermally activated delayed fluorescent substance to the level of the triplet excited state of the fluorescent material is unlikely to be a main energy transfer process; therefore, a description thereof is omitted here. In other words, energy transfer from the thermally activated delayed fluorescent substance in the singlet excited state (¹H*) to the fluorescent material in the singlet excited state (1G*) is important as represented by Formula (2-1) below (where ¹G represents the singlet ground state of the fluorescent material and ¹H represents the singlet ground state of the thermally activated delayed fluorescent substance).

$$^{1}H^{*}+^{1}G \rightarrow ^{1}H+^{1}G^{*}$$
 (2-1)

(2-2) when the excited state of the thermally activated

In the case where the level of the singlet excited state of the thermally activated delayed fluorescent substance is higher than the level of the singlet excited state of the fluorescent material, light is emitted through the following steps. First, excitation energy is transferred from the level of the triplet excited state of the thermally activated delayed fluorescent substance to the level of the singlet excited state of thermally activated delayed fluorescent substance by reverse intersystem crossing. Then, the excitation energy is transferred from the level of the singlet excited state of the thermally activated delayed fluorescent substance to the level of the singlet excited state of the fluorescent material, so that the fluorescent material is brought into the singlet excited state. The fluorescent material in the singlet excited state emits fluorescence.

In other words, as in Formula (2-2) below, the singlet excited state (1H*) of the thermally activated delayed fluorescent substance is generated from the triplet excited state (3H*) of the thermally activated delayed fluorescent substance by reverse intersystem crossing, and then energy is transferred to the singlet excited state (¹G*) of the fluorescent material.

$$^{3}H^{*+}^{1}G \rightarrow \text{(reverse intersystem crossing)} \rightarrow ^{1}H^{*1}G \rightarrow ^{1}H^{+1}G^{*}$$
 (2-2)

When all the energy transfer processes described above in (2) occur efficiently, both the triplet excitation energy and the singlet excitation energy of the thermally activated delayed fluorescent substance are efficiently converted into the singlet excited state (¹G*) of the fluorescent material. Thus, highefficiency light emission is possible. In contrast, before the excitation energy of the thermally activated delayed fluores-

cent substance is transferred to the fluorescent material, when the thermally activated delayed fluorescent substance itself is deactivated by emitting the excitation energy as light or heat, the luminous efficiency is decreased.

Next, factors controlling the above-described processes of intermolecular energy transfer between the thermally activated delayed fluorescent substance and the fluorescent material are described. As mechanisms of the intermolecular energy transfer, two mechanisms, i.e., Förster mechanism and Dexter mechanism, have been proposed.

In Förster mechanism (dipole-dipole interaction), energy transfer does not require direct contact between molecules and energy is transferred through a resonant phenomenon of dipolar oscillation between a thermally activated delayed fluorescent substance and a fluorescent material. By the resonant phenomenon of dipolar oscillation, the thermally activated delayed fluorescent substance provides energy to the fluorescent material, and thus, the thermally activated delayed fluorescent substance is put in a ground state and the fluorescent material is put in an excited state. Note that the rate constant $k_{h^* \to g}$ of Förster mechanism is expressed by Formula (1).

$$k_{h^* \to g} = \frac{9000 \ c^4 K^2 \phi \text{in} 10}{128 \pi^5 n^4 N \tau R^6} \int \frac{f_h'(v) \varepsilon_g(v)}{v^4} dv \tag{1}$$

In Formula (1), v denotes a frequency, $f_h(v)$ denotes a normalized emission spectrum of a thermally activated delayed fluorescent substance (a fluorescent spectrum in energy transfer from a singlet excited state, and a phosphorescent spectrum in energy transfer from a triplet excited 35 state), $\epsilon_{\sigma}(v)$ denotes a molar absorption coefficient of a fluorescent material, N denotes Avogadro's number, n denotes a refractive index of a medium, R denotes an intermolecular distance between the thermally activated delayed fluorescent substance and the fluorescent material, τ denotes a measured $_{40}$ lifetime of an excited state (fluorescence lifetime or phosphorescence lifetime), φ denotes a luminescence quantum yield (a fluorescence quantum yield in energy transfer from a singlet excited state, and a phosphorescence quantum yield in energy transfer from a triplet excited state), and K² denotes a coefficient (0 to 4) of orientation of a transition dipole moment between the thermally activated delayed fluorescent substance and the fluorescent material. Note that $K^2=2/3$ in random orientation.

In Dexter mechanism (electron exchange interaction), a thermally activated delayed fluorescent substance and a fluorescent material are close to a contact effective range where their orbitals overlap, and the thermally activated delayed fluorescent substance in an excited state and the fluorescent material in a ground state exchange their electrons, which leads to energy transfer. Note that the rate constant $k_{h^* \to g}$ of Dexter mechanism is expressed by Formula (2).

$$k_{h^* \to g} = \left(\frac{2\pi}{h}\right) K^2 \exp\left(-\frac{2R}{L}\right) \int f_h'(v) \varepsilon_g'(v) dv$$
 (2)

In Formula (2), h denotes a Planck constant, K denotes a 65 constant having an energy dimension, v denotes a frequency, $f_h(v)$ denotes a normalized emission spectrum of a thermally

8

activated delayed fluorescent substance (a fluorescent spectrum in energy transfer from a singlet excited state, and a phosphorescent spectrum in energy transfer from a triplet excited state), $\epsilon'_g(v)$ denotes a normalized absorption spectrum of a fluorescent material, L denotes an effective molecular radius, and R denotes an intermolecular distance between the thermally activated delayed fluorescent substance and the fluorescent material.

Here, the energy transfer efficiency Φ_{ET} from the thermally activated delayed fluorescent substance to the fluorescent material is thought to be expressed by Formula (3). In the formula, k, denotes a rate constant of a light-emission process (fluorescence in energy transfer from a singlet excited state, and phosphorescence in energy transfer from a triplet excited state) of a thermally activated delayed fluorescent substance, k, denotes a rate constant of a non-light-emission process (thermal deactivation or intersystem crossing) of a thermally activated delayed fluorescent substance, and τ denotes a measured lifetime of an excited state of a thermally activated delayed fluorescent substance.

[Formula 3]

$$\Phi_{ET} = \frac{k_{h^* \to g}}{k_r + k_n + k_{h^* \to g}} = \frac{k_{h^* \to g}}{\left(\frac{1}{\tau}\right) + k_{h^* \to g}}$$
(3)

According to Formula (3), it is found that the energy transfer efficiency Φ_{ET} can be increased by increasing the rate constant $k_{h^*\to g}$ of energy transfer so that another competing rate constant $k_r + k_n (=1/\tau)$ becomes relatively small.

In both the energy transfer processes of (2-1) and (2-2), since energy is transferred from the singlet excited state (¹H*) of the thermally activated delayed fluorescent substance to the fluorescent material, energy transfers by both Förster mechanism (Formula (1)) and Dexter mechanism (Formula (2)) are possible.

First, an energy transfer by Förster mechanism is considered. When τ is eliminated from Formula (1) and Formula (3), it can be said that the energy transfer efficiency Φ_{ET} is higher when the quantum yield ϕ (here, a fluorescence quantum efficiency because energy transfer from a singlet excited state is discussed) is higher. However, in practice, a more important factor is that the emission spectrum of the thermally activated delayed fluorescent substance (here, a fluorescent spectrum because energy transfer from a singlet excited state is discussed) largely overlaps with the absorption spectrum of the fluorescent material (absorption corresponding to the transition from the singlet ground state to the singlet excited state) (note that it is preferable that the molar absorption coefficient of the fluorescent material be also high). This means that the fluorescent spectrum of the thermally activated delayed fluorescent substance overlaps with the absorption band on the longest wavelength side of the fluorescent material.

Next, an energy transfer by Dexter mechanism is considered. According to Formula (2), in order to increase the rate constant $k_{h^* \to g}$; it is preferable that an emission spectrum of a thermally activated delayed fluorescent substance (here, a fluorescent spectrum because energy transfer from a singlet excited state is discussed) largely overlap with an absorption spectrum of a fluorescent material (absorption corresponding to transition from a singlet ground state to a singlet excited state).

The above description suggests that in both the energy transfer processes of (2-1) and (2-2), the energy transfer effi-

ciency can be optimized by making the emission spectrum of the thermally activated delayed fluorescent substance overlap with the absorption band on the longest wavelength side of the fluorescent material.

In order to increase the luminous efficiency of the lightemitting element, it is important that the thermally activated
delayed fluorescent substance generates a singlet excited
state from a triplet excited state and the fluorescent material
has high fluorescence quantum yield.

However, it is very difficult to form a material which can 10 generate a singlet excited state from a triplet excited state and has high fluorescence quantum yield.

It is preferable that the ratio of the energy transfer process of (2) be high and the ratio of the direct recombination process of (1) be low because the thermal deactivation process of (1-2) can be reduced. Thus, the concentration of the fluorescent material is preferably 5 wt % or lower, more preferably 1 wt % or lower.

Therefore, one embodiment of the present invention provides an effective technique which can overcome problems of the energy transfer efficiency from the thermally activated delayed fluorescent substance in the triplet excited state to the fluorescent material and the fluorescence quantum efficiency of the singlet excited state of the fluorescent material in the case where the fluorescent material is used as a light-emitting substance. Specific embodiments thereof are described ²⁵ below.

One embodiment of the present invention provides a lightemitting element in which a thermally activated delayed fluorescent substance is used as an energy donor capable of efficiently transferring energy to a fluorescent material. The 30 thermally activated delayed fluorescent substance has a feature that its singlet and triplet excited states are close to each other. Thus, in the thermally activated delayed fluorescent substance, a triplet excited state is easily transferred to a singlet excited state. By making the emission spectrum of the 35 thermally activated delayed fluorescent substance overlap with an absorption band on the longest wavelength side in absorption by the fluorescent material, i.e., an energy acceptor, in a singlet excited state (an absorption corresponding to the transition from the singlet ground state to the singlet excited state), it becomes possible to improve the energy transfer efficiency from the triplet excited state and the singlet excited state of the thermally activated delayed fluorescent substance to the singlet excited state of the fluorescent mate-

In the case where a light-emitting substance includes a 45 material for generating a singlet excited state from a triplet excited state and another material for obtaining light emission efficiently from the singlet excited state, a material having high fluorescence quantum yield, for example, a material whose fluorescence quantum yield is 50% or more, can be selected as the light-emitting substance with or without thermally activated delay.

Thus, the energy of the singlet excited state and the triplet excited state of the thermally activated delayed fluorescent substance can be converted into light emission more efficiently through the singlet excited state of the fluorescent material. Accordingly, a light-emitting element having high luminous efficiency can be formed.

In a light-emitting element having the above structure, energy transfer occurs efficiently as illustrated in FIG. 2. FIG. 2 shows that a light-emitting layer 113 is provided between an electrode 101 and an electrode 102. There may be a given layer between each electrode and the light-emitting layer 113. Energy is transferred from a singlet excited state S_D of a thermally activated delayed fluorescent substance 113D to a singlet excited state S_A of a light-emitting substance 113A. Further, a triplet excited state T_D of the thermally activated delayed fluorescent substance 113D is changed to the singlet

10

excited state S_D of the thermally activated delayed fluorescent substance 113D by reverse intersystem crossing, and then energy is transferred to the singlet excited state S_A of the light-emitting substance 113A. Then, the singlet excited state S_A of the light-emitting substance 113A emits light. As described above, in the light-emitting element of one embodiment of the present invention, energy transfer and light emission are performed well by including a material for generating a singlet excited state from a triplet excited state and another material for obtaining light emission efficiently from the singlet excited state; thus, the light-emitting element can have high luminous efficiency.

FIGS. 1A to 1C are schematic diagrams of the light-emitting element of this embodiment. FIG. 1A is a diagram of the light-emitting element, and FIGS. 1B and 1C are enlarged diagrams of only the light-emitting layer 113.

The light-emitting element includes an EL layer 103 between a pair of electrodes, the first electrode 101 and the second electrode 102, and the EL layer 103 contains an organic compound as a light-emitting substance. In addition, the EL layer includes the light-emitting layer 113, and the light-emitting substance is contained at least in the light-emitting layer 113. There is no limitation on layers other than the light-emitting layer 113, and any layer may be used as the other layers. A typical stacked-layer structure includes a hole-injection layer 111, a hole-transport layer 112, an electron-transport layer 114, an electron-injection layer 115, and the like. Besides, a carrier-blocking layer or the like may be provided, or a plurality of light-emitting layers may be provided

The light-emitting layer 113 includes the thermally activated delayed fluorescent substance 113D and the light-emitting substance 113A. As illustrated in FIG. 1B, the thermally activated delayed fluorescent substance 113D may include a material which can generate a singlet excited state by itself from a triplet excited state by reverse intersystem crossing. The thermally activated delayed fluorescent substance 113D may include a plurality of materials. As illustrated in FIG. 1C, it is particularly preferable that the thermally activated delayed fluorescent substance 113D include two kinds of materials, which are a first organic compound 113D1 and a second organic compound 113D2 which form an exciplex. An exciplex has a small difference between the level of the singlet excited state and the level of the triplet excited state, and thus energy is easily transferred from the level of the triplet excited state to the level of the singlet excited state in the exciplex. Thus, the thermally activated delayed fluorescent substance formed using the combination of the first organic compound and the second organic compound which form an exciplex is suitable for the thermally activated delayed fluorescent substance of one embodiment of the present invention. Further, in terms of luminous efficiency and reliability, it is preferable to use a material having a hole-transport property as one of the first organic compound and the second organic compound and to use a material having an electrontransport property as the other because the carrier balance between holes and electrons in the light-emitting layer can be easily optimized by adjustment of the mixture ratio of the first organic compound and the second organic compound. Note that this does not exclude the possibility that the light-emitting layer 113 in the light-emitting element of this embodiment contains another substance.

In the thermally activated delayed fluorescent substance, the singlet excited state is close to the triplet excited state; in particular, the energy difference between the singlet excited state and the triplet excited state is preferably larger than or equal to 0 eV and smaller than or equal to 0.2 eV.

The thermally activated delayed fluorescent substance and the fluorescent material are preferably combined so that light emission of the thermally activated delayed fluorescent substance is overlapped with an absorption band on the longest wavelength side of the light-emitting substance 113A as 5 described above. Accordingly, energy is efficiently transferred from the singlet excited state of the thermally activated delayed fluorescent substance to the singlet excited state of the fluorescent material.

As examples of a fluorescent material which can be used 10 for the light-emitting substance 113A, the following can be given. Examples of the fluorescent substance are 5,6-bis[4-(10-phenyl-9-anthryl)phenyl]-2,2'-bipyridine (abbreviation: PAP2BPy), 5,6-bis[4'-(10-phenyl-9-anthryl)biphenyl-4-yl]-2,2'-bipyridine (abbreviation: PAPP2BPy), N,N-bis[4-(9-15 phenyl-9H-fluoren-9-yl)phenyl]-N,N-diphenyl-pyrene-1,6diamine (abbreviation: 1,6FLPAPrn), N,N'-bis[4-(9Hcarbazol-9-yl)phenyl]-N,N'-diphenylstilbene-4,4'-diamine (abbreviation: YGA2S), 4-(9H-carbazol-9-yl)-4'-(10-phenvl-9-anthrvl)triphenvlamine (abbreviation: YGAPA), 20 4-(9H-carbazol-9-yl)-4'-(9,10-diphenyl-2-anthryl)triphenylamine (abbreviation: 2YGAPPA), N,9-diphenyl-N-[4-(10phenyl-9-anthryl)phenyl]-9H-carbazol-3-amine (abbreviation: PCAPA), perylene, 2,5,8,11-tetra-tert-butylperylene (abbreviation: TBP), 4-(10-phenyl-9-anthryl)-4'-(9-phenyl-25 9H-carbazol-3-yl)triphenylamine (abbreviation: PCBAPA), N,N"-(2-tert-butylanthracene-9,10-diyldi-4,1-phenylene)bis [N,N',N-triphenyl-1,4-phenylenediamine] (abbreviation: DPABPA), N,9-diphenyl-N-[4-(9,10-diphenyl-2-anthryl) phenyl]-9H-carbazol-3-amine (abbreviation: 2PCAPPA), 30 N-[4-(9,10-diphenyl-2-anthryl)phenyl]-N,N,N-triphenyl-1, 4-phenylenediamine (abbreviation: 2DPAPPA), N,N,N',N', N",N",N"",N""-octaphenyldibenzo[g,p]chhrysene-2,7,10,15tetraamine (abbreviation: DBC1), coumarin 30, N-(9,10diphenyl-2-anthryl)-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), N-[9,10-bis(1,1'-biphenyl-2-yl)-2anthryl]-N,9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCABPhA), N-(9,10-diphenyl-2-anthryl)-N,N',N'-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPA), N-[9, 10-bis(1,1'-biphenyl-2-yl)-2-anthryl]-N,N',N'-triphenyl-1,4- 40 phenylenediamine (abbreviation: 2DPABPhA), 9,10-bis(1, 1'-biphenyl-2-yl)-N-[4-(9H-carbazol-9-yl)phenyl]-Nphenylanthracen-2-amine (abbreviation: 2YGABPhA), N,N, 9-triphenylanthracen-9-amine (abbreviation: DPhAPhA), coumarin 545T, N,N'-diphenylquinacridone (abbreviation: 45 DPQd), rubrene, 5,12-bis(1,1'-biphenyl-4-yl)-6,11-diphenyltetracene (abbreviation: BPT), 2-(2-{2-[4-(dimethylamino)phenyl]ethenyl}-6-methyl-4H-pyran-4-ylidene)propanedinitrile (abbreviation: DCM1), 2-{2-methyl-6-[2-(2,3, 6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene}propanedinitrile (abbreviation: DCM2), N,N,N',N'-tetrakis(4-methylphenyl)tetracene-5,11diamine (abbreviation: p-mPhTD), 7,14-diphenyl-N,N,N', N'-tetrakis(4-methylphenyl)acenaphtho[1,2-a]fluoranthene-3,10-diamine (abbreviation: p-mPhAFD), 2-{2-isopropyl-6-55 [2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-benzo[ij] quinolizin-9-yl)ethenyl]-4H-pyran-4ylidene}propanedinitrile (abbreviation: DCJTB), 2-{2-tertbutyl-6-[2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5Hbenzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4ylidene{propanedinitrile (abbreviation: DCJTB), 2-(2,6bis{2-[4-(dimethylamino)phenyl]ethenyl}-4H-pyran-4ylidene)propanedinitrile (abbreviation: BisDCM), 2-{2,6-bis [2-(8-methoxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H, 5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4ylidene}propanedinitrile (abbreviation: BisDCJTM), and the like.

12

The concentration of the fluorescent material in the lightemitting layer 113 is preferably 5 wt % or lower, more preferably 1 wt % or lower. With such a concentration, the ratio of the energy transfer process of (2) can be increased and the ratio of the direct recombination process of (1) can be decreased, so that the thermal deactivation process of (1-2) can be reduced.

In the case where the thermally activated delayed fluorescent substance is formed using one kind of material, the following can be used, for example.

First, a fullerene, a derivative thereof, an acridine derivative such as proflavine, and eosin can be given. Further, a metal-containing porphyrin, such as a porphyrin containing magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), or palladium (Pd) can be given. Examples of the metal-containing porphyrin include a protoporphyrin-tin fluoride complex (SnF₂(Proto IX)), a mesoporphyrin-tin fluoride complex (SnF₂(Meso IX)), a hematoporphyrin-tin fluoride complex (SnF₂(Hemato IX)), a coproporphyrin tetramethyl ester-tin fluoride complex (SnF₂ (Copro III-4Me)), an octaethylporphyrin-tin fluoride complex (SnF₂(OEP)), an etioporphyrin-platinum chloride complex (SnF₂(Etio I)), and an octaethylporphyrin-platinum chloride complex (PtCl₂(OEP)), which are shown in the following structural formulae.

[Chemical formula 1]

$$CH_2$$
 HC
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_7
 CH_7
 CH_7
 CH_8
 CH_8
 CH_9
 CH

$$H_3C$$
 CH_2
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_7
 CH_7
 CH_8
 CH_8
 CH_8
 CH_9
 CH_9

SnF₂(Meso IX)

COOH

соон

15

20

$$CH_3$$
 HO
 CH
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_7
 CH_7
 CH_8
 CH_8
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 $COOH$
 $COOH$

COOCH₃

$$H_2C$$
 H_2C
 CH_2
 CH_3
 CH_2
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_8
 CH_8
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 CH_9
 $COOCH_9$
 $COOCH_9$
 $COOCH_9$
 $COOCH_9$

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ CH_2 & CH_2 \\ CH_2 & CH_2 \\ CH_3 & CH_2 \\ CH_3 & CH_2 \\ CH_3 & CH_2 \\ CH_3 & CH_3 \\ SnF_2(OEP) \end{array}$$

-continued
$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\ \text{CH}_5$$

25
$$CH_3$$
 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_9 CH_9

Alternatively, a heterocyclic compound having a π-electron rich heteroaromatic ring and a π -electron deficient heteroaromatic ring, such as 2-(biphenyl-4-yl)-4,6-bis(12-phenylindolo[2,3-a]charbazol-1'-yl)-1,3,5-triazine (PIC-TRZ) shown in the following structural formula, can be used as the thermally activated delayed fluorescent substance, which is formed using one kind of material. The heterocyclic compound is preferably used because of the π -electron rich het-55 eroaromatic ring and the π -electron deficient heteroaromatic ring, for which the electron-transport property and the holetransport property are high. Note that a substance in which the π -electron rich heteroaromatic ring is directly bonded to the 60 π -electron deficient heteroaromatic ring is particularly preferably used because the donor property of the π -electron rich heteroaromatic ring and the acceptor property of the π -electron deficient heteroaromatic ring are both increased and the difference between the level of the singlet excited state and the level of the triplet excited state becomes small.

[Chemical formula 2]

As the thermally activated delayed fluorescent substance, two kinds of organic compounds, which are the first organic compound and the second organic compound which form an exciplex, can be used. In this case, a known carrier-transport material can be used as appropriate. In order to form an exciplex efficiently, it is particular preferable to combine a compound which easily accepts electrons (a compound having an electron-transport property) and a compound which easily accepts holes (a compound having a hole-transport property).

This is because the carrier balance between holes and electrons in the light-emitting layer can be easily optimized by the use of the combination of a material having an electron-transport property and a material having a hole-transport property as the thermally activated delayed fluorescent substance and by adjustment of the mixture ratio of the material 40 having an electron-transport property and the material having a hole-transport property. The optimization of the carrier balance between holes and electrons in the light-emitting layer can prevent a region in which electrons and holes are recombined from existing on one side in the light-emitting 45 layer. By preventing the region in which electrons and holes are recombined from existing to one side, the reliability of the light-emitting element can be improved.

As the compound which easily accepts electrons (the material having an electron-transport property), a π-electron defi- 50 cient heteroaromatic compound, a metal complex, or the like can be used. Specific examples include a metal complex such as bis(10-hydroxybenzo[h]quinolinato)beryllium(II) (abbrebis(2-methyl-8-quinolinolato)(4-pheviation: BeBq₂), nylphenolato)aluminum(III) (abbreviation: BAIq), bis(8- 55 quinolinolato)zinc(II) (abbreviation: Znq), bis[2-(2benzoxazolyl)phenolato|zinc(II) (abbreviation: ZnPBO), or bis[2-(2-benzothiazolyl)phenolato]zinc(II) (abbreviation: ZnBTZ); a heterocyclic compound having a polyazole skeleton such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4- 60 oxadiazole (abbreviation: PBD), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (abbreviation: TAZ), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (abbreviation: OXD-7), 9-[4-(5-phenyl-1,3,4-oxadiazol-2yl)phenyl]-9H-carbazole (abbreviation: CO11), 2,2',2"-(1,3, 65 5-benzenetriyl)tris(1-phenyl-1H-benzimidazole) (abbreviation: TPBI), or 2-[3-(dibenzothiophen-4-yl)phenyl]-116

phenyl-1H-benzimidazole (abbreviation: mDBTBIm-II); a heterocyclic compound having a diazine skeleton such as 2-[3-(dibenzothiophen-4-yl)phenyl]dibenzo[f,h]quinoxaline (abbreviation: 2mDBTPDBq-II), 2-[3'-(dibenzothiophen-4vl)biphenyl-3-ylldibenzo[f,h]quinoxaline (abbreviation: 2mDBTBPDBq-II), 2-[3'-(9H-carbazol-9-yl)biphenyl-3-yl] dibenzo[f,h]quinoxaline (abbreviation: 2mCzBPDBq), 4.6bis[3-(phenanthren-9-yl)phenyl]pyrimidine (abbreviation: 4,6mPnP2Pm), or 4,6-bis[3-(4-dibenzothienyl)phenyl]pyrimidine (abbreviation: 4,6mDBTP2Pm-II); and a heterocyclic compound having a pyridine skeleton such as 3,5-bis[3-(9Hcarbazol-9-yl)phenyl]pyridine (abbreviation: 35DCzPPy) or 1,3,5-tri[3-(3-pyridyl)phenyl]benzene (abbreviation: TmPyPB). Among the above materials, a heterocyclic compound having a diazine skeleton and a heterocyclic compound having a pyridine skeleton have high reliability and are thus preferable. Specifically, a heterocyclic compound having a diazine (pyrimidine or pyrazine) skeleton has a high electron-transport property to contribute to a reduction in drive voltage.

As the compound which easily accepts holes (material having a hole-transport property), a π -electron rich heteroaromatic compound, an aromatic amine compound, or the like can be favorably used. Specific examples include a compound having an aromatic amine skeleton such as 2-[N-(9-phenylcarbazol-3-yl)-N-phenylamino]spiro-9,9'-bifluorene (abbreviation: PCASF), 4,4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (abbreviation: NPB), N,N'-bis(3-methylphenyl)-N, N'-diphenyl-[1,1'-biphenyl]-4,4'-diamine (abbreviation: TPD), 4,4'-bis[N-(spiro-9,9'-bifluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: BSPB), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenylamine (abbreviation: BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl)triphenylamine (abbreviation: mBPAFLP), 4-phenyl-4'-(9-phenyl-9H-carbazol-3yl)triphenylamine (abbreviation: PCBA1BP), 4,4'-diphenyl-4"-(9-phenyl-9H-carbazol-3-yl)triphenylamine (abbreviation: PCBBi1BP), 4-(1-naphthyl)-4'-(9-phenyl-9Hcarbazol-3-vl)triphenylamine (abbreviation: PCBANB), 4,4'-di(1-naphthyl)-4"-(9-phenyl-9H-carbazol-3-yl)triphenylamine (abbreviation: PCBNBB), 9,9-dimethyl-N-phenyl-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-fluoren-2amine (abbreviation: PCBAF), or N-phenyl-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-spiro-9,9'-bifluoren-2-amine (abbreviation: PCBASF); a compound having a carbazole skeleton such as 1,3-bis(N-carbazolyl)benzene (abbreviation: mCP), 4,4'-di(N-carbazolyl)biphenyl (abbreviation: CBP), 3,6-bis(3,5-diphenylphenyl)-9-phenylcarbazole (abbreviation: CzTP), or 9-phenyl-9H-3-(9-phenyl-9H-carbazol-3-yl)carbazole (abbreviation: PCCP); a compound having a thiophene skeleton such as 4,4',4"-(benzene-1,3,5-triyl) tri(dibenzothiophene) (abbreviation: DBT3P-II), diphenyl-4-[4-(9-phenyl-9H-fluoren-9-yl)phenyl] dibenzothiophene (abbreviation: DBTFLP-III), or 4-[4-(9phenyl-9H-fluoren-9-yl)phenyl]-6-phenyldibenzothiophene (abbreviation: DBTFLP-IV); and a compound having a furan skeleton such as 4,4',4"-(benzene-1,3,5-triyl)tri(dibenzofuran) (abbreviation: DBF3P-II) or 4-{3-[3-(9-phenyl-9H-fluoren-9-yl)phenyl]phenyl}dibenzofuran (abbreviation: mmDBFFLBi-II). Among the above materials, a compound having an aromatic amine skeleton and a compound having a carbazole skeleton are preferable because these compounds are highly reliable and have high hole-transport properties to contribute to a reduction in drive voltage.

The first organic compound and the second organic compound are not limited to these examples, as long as they can transport carriers, the combination can form an exciplex, and

light emission of the exciplex overlaps with an absorption band on the longest wavelength side in an absorption spectrum of a light-emitting substance (an absorption corresponding to the transition of the light-emitting substance from the singlet ground state to the singlet excited state), and other known materials may be used.

Note that in the case where a material having an electrontransport property and a material having a hole-transport property are used as the first organic compound and the second organic compound, carrier balance can be controlled by the mixture ratio of the compounds. Specifically, the ratio of the first organic compound to the second organic compound is preferably 1:9 to 9:1.

Here, compounds which form an exciplex (the first organic compound 113D1 and the second organic compound 113D2) and the exciplex are described in a little more detail.

FIGS. 10A and 10B show emission spectra of four kinds of 20 organic compounds and emission spectra of exciplexes formed using the organic compounds. Note that in the figures, a compound 1 is 2-[4-(dibenzothiophen-4-yl)phenyl]-1-phenyl-1H-benzimidazole (abbreviation: DBTBIm-II); a compound 2 is 2-[3-(dibenzothiophen-4-yl)phenyl]dibenzo[f,h] quinoxaline (abbreviation: 2mDBTPDBq-II); a compound 3 4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (abbreviation: 1'-TNATA); a compound 4 is 2,7-bis [N-(4-diphenylaminophenyl)-N-phenylamino]-spiro-9,9'bifluorene (abbreviation: DPA2SF). An exciplex 1 is an exciplex of the compound 1 and the compound 3. An exciplex 2 is an exciplex of the compound 2 and the compound 3. An exciplex 3 is an exciplex of the compound 2 and 4,4'-bis[N- 35 (1-naphthyl)-N-phenylamino|biphenyl (abbreviation: NPB). An exciplex 4 is an exciplex of the compound 2 and the compound 4.

Structural formulae of the compounds are shown below.

[Chemical formula 3]

Compound 2: 2mDBTPDBq-II

-continued

Compound 3:1'-TNATA

Compound 4: DPA2SF

NPB

FIG. 10A shows emission spectra of the exciplexes 1 and 2 and the compounds 1 to 3. The spectrum of the exciplex 1 is the result of measuring light emission of a material based on the compound 1 to which a slight amount of compound 3 is added, and the spectrum of the exciplex 2 is the result of measuring light emission of a material based on the compound 2 to which a slight amount of compound 3 is added. That is, in a sample used for measurement of the exciplex 1, one of the compounds 1 and 3 corresponds to the first organic compound 113D1, and the other corresponds to the second organic compound 113D2. In a sample used for measurement of the exciplex 2, one of the compounds 2 and 3 corresponds to the first organic compound 113D1, and the other corresponds to the second organic compound 113D1, and the other corresponds to the second organic compound 113D2.

As can be seen from FIG. 10A, there is a difference of 100 nm or more between light emission of the exciplex 1 and light emission of the exciplex 2 even though both materials contain the compound 3 as a slight-amount component. This means

that the emission wavelength of an exciplex can be easily adjusted by changing a base substance.

The peak wavelength of the emission spectrum of the exciplex 1 is approximately 520 nm, and thus the thermally activated delayed fluorescent substance containing the compound 1 and the compound 3 can be preferably used together with a material which emits blue-green to red fluorescence.

The peak wavelength of the emission spectrum of the exciplex 2 is approximately 610 nm, and thus the thermally activated delayed fluorescent substance containing the compound 2 and the compound 3 can be preferably used together with a material which emits red fluorescence.

FIG. 10B shows emission spectra of the exciplexes 3 and 4 and the compounds 2 and 4. The spectrum of the exciplex 3 is the result of measuring light emission of a material based on 15 the compound 2 to which a slight amount of NPB is added, and the spectrum of the exciplex 4 is the result of measuring light emission of a material based on the compound 2 to which a slight amount of compound 4 is added. That is, in a sample used for measurement of the exciplex 3, one of the compound 2 and NPB corresponds to the first organic compound 113D1, and the other corresponds to the second organic compound 113D2. In a sample used for measurement of the exciplex 4, one of the compounds 2 and 4 corresponds to the first organic compound 113D1, and the other corresponds to the second organic compound 113D2.

As can be seen from FIG. 10B, there is a difference of about 100 nm between light emission of the exciplex 3 and light emission of the exciplex 4 even though both materials contain the same base material. This means that the emission wavelength of an exciplex can be easily adjusted by changing a substance that is a slight-amount component.

The peak wavelength of the emission spectrum of the exciplex 3 is approximately 520 nm, and thus the thermally activated delayed fluorescent substance containing the compound 2 and NPB can be preferably used together with a material which emits blue-green to red fluorescence.

The peak wavelength of the emission spectrum of the exciplex 4 is approximately 580 nm, and thus the thermally activated delayed fluorescent substance containing the compounds 2 and 4 can be preferably used together with a material which emits orange to red fluorescence.

The light-emitting element having the above structure has high energy transfer efficiency to the fluorescent material and has high luminous efficiency.

In the case where the two kinds of organic compounds which form an exciplex are used as the thermally activated delayed fluorescent substance, the driving voltage of the light-emitting element can be lowered, which is also preferable. By lowering the driving voltage, a light-emitting element with low power consumption can be formed. The reason why the driving voltage of the light-emitting element can be lowered by the use of the exciplex is described below.

In the case where the organic compounds which form an exciplex are used as the thermally activated delayed fluorescent substance, the threshold value of the voltage at which the exciplex is formed by carrier recombination (or a singlet exciton) is determined depending on the energy of the peak of the emission spectrum of the exciplex. When the emission spectrum of the exciplex peaks at 620 nm (2.0 eV), for 60 example, the threshold value of voltage needed when the exciplex is formed with electric energy is also approximately 2.0 V.

Here, when the energy of the peak of the emission spectrum of the exciplex is too high (i.e., when the wavelength is too 65 short), the threshold value of the voltage with which an exciplex is formed also increases. That case is not preferred

20

because higher voltage is needed to make the fluorescent material emit light by energy transfer from the exciplex to the fluorescent material, and thus extra energy is consumed. From this point of view, it is preferable that energy of the peak of the emission spectrum of the exciplex be lower (the wavelength be longer) because the threshold value of the voltage is lowered.

Thus, the peak wavelength of the emission spectrum of the exciplex is made to be longer than or equal to the peak wavelength of the absorption band on the longest wavelength side in the absorption spectrum of the fluorescent material, whereby a light-emitting element with low driving voltage can be obtained. Even in this case, energy can be transferred by utilizing an overlap of the emission spectrum of the exciplex with the absorption band on the longest wavelength side in the absorption spectrum of the fluorescent material; thus, high luminous efficiency can be obtained. As described above, high luminous efficiency (external quantum efficiency) is obtained with the drive voltage reduced, whereby high power efficiency can be achieved.

In the light-emitting element, the threshold voltage at which an exciplex is formed due to the carrier recombination is lower than the threshold voltage at which the fluorescent material starts to emit light due to the carrier recombination. In other words, even when voltage that is lower than the threshold voltage with which the fluorescent material starts to emit light is applied to the light-emitting element, carrier recombination occurs and an exciplex is formed; thus, recombination current starts to flow through the light-emitting element. Therefore, a light-emitting element with lower drive voltage (with more favorable voltage-current characteristics) can be provided.

Accordingly, at the time when the voltage reaches the threshold value with which the fluorescent material starts to emit light, a sufficient number of carriers exist in the lightemitting layer and carrier recombination which can contribute to light emission of the fluorescent material smoothly occurs many times. Therefore, luminance becomes remarkably high at a voltage close to the threshold voltage (light emission start voltage) of the fluorescent material. In other words, a curve representing the voltage-luminance characteristics can be steep in a rising portion near the emission start voltage; thus, drive voltage needed to obtain desired luminance can be low. Further, to obtain practical luminance, driving is performed with voltage higher than or equal to the threshold voltage (light emission start voltage) of the fluorescent material, in which case emitted light originates mostly from the fluorescent material and the light-emitting element is thus allowed to have high current efficiency.

The effect of the reduction in voltage is seen notably when the peak of the emission spectrum of the exciplex is located in a region ranging from the peak of the emission spectrum of the fluorescent material to a wavelength 30 nm longer than the peak of the emission spectrum of the fluorescent material or when the difference in equivalent energy value between peak wavelength of the emission spectrum of the exciplex and the peak wavelength of the emission spectrum of the fluorescent material is smaller than or equal to +0.2 eV. In the case of a region when the peak of the emission spectrum of the exciplex is located in a region ranging from the peak of the emission spectrum of the fluorescent material to a wavelength 30 nm shorter than the peak of the emission spectrum of the fluorescent material or when the difference in equivalent energy value between peak wavelength of the emission spectrum of the exciplex and the peak wavelength of the emission spectrum of the fluorescent material is greater than or equal to -0.2 eV, relatively high luminous efficiency can be kept.

Embodiment 2

In this embodiment, a detailed example of the structure of the light-emitting element described in Embodiment 1 is described below with reference to FIGS. 1A to 1C.

A light-emitting element in this embodiment includes, between a pair of electrodes, an EL layer including a plurality of layers. In this embodiment, the light-emitting element includes the first electrode 101, the second electrode 102, and the EL layer 103 which is provided between the first electrode 101 and the second electrode 102. Note that the following description in this embodiment is made on the assumption that the first electrode 101 functions as an anode and that the second electrode 102 functions as a cathode. In other words, when a voltage is applied between the first electrode 101 and 15 the second electrode 102 so that the potential of the first electrode 101 is higher than that of the second electrode 102, light emission can be obtained.

Since the first electrode 101 functions as the anode, the first electrode 101 is preferably formed using any of metals, 20 alloys, electrically conductive compounds with a high work function (specifically, a work function of 4.0 eV or more), mixtures thereof, and the like. Specifically, for example, indium oxide-tin oxide (ITO: indium tin oxide), indium oxide-tin oxide containing silicon or silicon oxide, indium 25 oxide-zinc oxide, indium oxide containing tungsten oxide and zinc oxide (IWZO), and the like can be given. Films of these electrically conductive metal oxides are usually formed by a sputtering method but may be formed by application of a sol-gel method or the like. In an example of the formation 30 method, indium oxide-zinc oxide is deposited by a sputtering method using a target obtained by adding 1 wt % to 20 wt % of zinc oxide to indium oxide. Further, a film of indium oxide containing tungsten oxide and zinc oxide (IWZO) can be formed by a sputtering method using a target in which tung- 35 sten oxide and zinc oxide are added to indium oxide at 0.5 wt % to 5 wt % and 0.1 wt % to 1 wt %, respectively. Besides, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), cobalt (Co), copper (Cu), palladium (Pd), nitrides of metal materials (e.g., tita-40 nium nitride), and the like can be given. Graphene can also be used. Note that when a composite material described later is used for a layer which is in contact with the first electrode 101 in the EL layer 103, an electrode material can be selected regardless of its work function.

There is no particular limitation on the stacked-layer structure of the EL layer 103 as long as the light-emitting layer 113 has the structure described in Embodiment 1. For example, the EL layer 103 can be formed by combining a hole-injection layer, a hole-transport layer, the light-emitting layer, an electron-transport layer, an electron-injection layer, a carrier-blocking layer, an intermediate layer, and the like as appropriate. In this embodiment, the EL layer 103 has a structure in which the hole-injection layer 111, the hole-transport layer 112, the light-emitting layer 113, the electron-transport layer 55 114, and the electron-injection layer 115 are stacked in this order over the first electrode 101. Specific examples of materials used for each layer are given below.

The hole-injection layer 111 is a layer containing a material having a high hole-injection property. Molybdenum 60 oxide, vanadium oxide, ruthenium oxide, tungsten oxide, manganese oxide, or the like can be used. Alternatively, the hole-injection layer 111 can be formed using a phthalocyanine-based compound such as phthalocyanine (abbreviation: H_2Pc) or copper phthalocyanine (abbreviation: CuPc), an 65 aromatic amine compound such as 4,4'-bis[N-(4-dipheny-laminophenyl)-N-phenylamino]biphenyl (abbreviation:

22

DPAB) or N,N'-bis{4-[bis(3-methylphenyl)amino]phenyl}-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (abbreviation: DNTPD), a high molecular compound such as poly(ethylene-dioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), or the like.

Alternatively, a composite material in which a material having a hole-transport property contains a substance having an acceptor property can be used for the hole-injection layer 111. Note that the use of such a substance having a holetransport property which contains a substance having an acceptor property enables selection of a material used to form an electrode regardless of its work function. In other words, besides a material having a high work function, a material having a low work function can also be used for the first electrode 101. As the substance having an acceptor property, 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F₄-TCNQ), chloranil, and the like can be given. In addition, transition metal oxides can be given. Oxides of the metals that belong to Groups 4 to 8 of the periodic table can be given. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide are preferable in that their electron-accepting property is high. Among these oxides, molybdenum oxide is particularly preferable in that it is stable in the air, has a low hygroscopic property, and is easy to handle.

As the substance having a hole-transport property which is used for the composite material, any of a variety of organic compounds such as aromatic amine compounds, carbazole derivatives, aromatic hydrocarbons, and high molecular compounds (e.g., oligomers, dendrimers, or polymers) can be used. Note that the organic compound used for the composite material is preferably an organic compound having a high hole-transport property. Specifically, a substance having a hole mobility of 10^{-6} cm²/Vs or more is preferably used. Organic compounds that can be used as the substance having a hole-transport property in the composite material are specifically given below.

Examples of the aromatic amine compounds are N,N'-di (p-tolyl)-N,N'-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4'-bis[N-(4-diphenylaminophenyl)-N-phenylamino]biphenyl (abbreviation: DPAB), N,N'-bis{4-[bis(3-methylphenyl)amino]phenyl}-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (abbreviation: DNTPD), 1,3,5-tris[N-(4-diphenylaminophenyl)-N-phenylamino]benzene (abbreviation: DPA3B), and the like.

Specific examples of the carbazole derivatives that can be used for the composite material are 3-[N-(9-phenylcarbazol-3-yl)-N-phenylamino]-9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis[N-(9-phenylcarbazol-3-yl)-N-phenylamino]-9-phenylcarbazole (abbreviation: PCzPCA2), 3-[N-(1-naphthyl)-N-(9-phenylcarbazol-3-yl)amino]-9-phenylcarbazole (abbreviation: PCzPCN1), and the like.

Other examples of the carbazole derivatives that can be used for the composite material are 4,4'-di(N-carbazolyl)biphenyl (abbreviation: CBP), 1,3,5-tris[4-(N-carbazolyl)phenyl]benzene (abbreviation: TCPB), 9-[4-(10-phenyl-9-anthracenyl)phenyl]-9H-carbazole (abbreviation: CzPA), 1,4-bis[4-(N-carbazolyl)phenyl]-2,3,5,6-tetraphenylbenzene, and the like.

Examples of the aromatic hydrocarbons that can be used for the composite material are 2-tert-butyl-9,10-di(2-naphthyl)anthracene (abbreviation: t-BuDNA), 2-tert-butyl-9,10-di(1-naphthyl)anthracene, 9,10-bis(3,5-diphenylphenyl)anthracene (abbreviation: DPPA), 2-tert-butyl-9,10-bis(4-phenylphenyl)anthracene (abbreviation: t-BuDBA), 9,10-di (2-naphthyl)anthracene (abbreviation: DNA), 9,10-di

diphenylanthracene (abbreviation: DPAnth), 2-tertbutylanthracene (abbreviation: t-BuAnth), 9,10-bis(4methyl-1-naphthyl)anthracene (abbreviation: 2-tert-butyl-9,10-bis[2-(1-naphthyl)phenyl]anthracene, 9,10-bis[2-(1-naphthyl)phenyl]anthracene, 2,3,6,7-tetram- 5 ethyl-9,10-di(1-naphthyl)anthracene, 2,3,6,7-tetramethyl-9, 10-di(2-naphthyl)anthracene, 9,9'-bianthryl, 10,10'-diphenyl-9,9'-bianthryl, 10,10'-bis(2-phenylphenyl)-9,9'bianthryl, 10,10'-bis[(2,3,4,5,6-pentaphenyl)phenyl]-9,9'bianthryl, anthracene, tetracene, rubrene, perylene, 2,5,8,11- 10 tetra(tert-butyl)perylene, and the like. Besides, pentacene, coronene, or the like can also be used. The aromatic hydrocarbon which has a hole mobility of 1×10^{-6} cm²/Vs or more and which has 14 to 42 carbon atoms is particularly prefer-

Note that the aromatic hydrocarbons that can be used for the composite material may have a vinyl skeleton. Examples of the aromatic hydrocarbon having a vinyl group are 4,4'-bis (2,2-diphenylvinyl)biphenyl (abbreviation: DPVBi), 9,10-bis[4-(2,2-diphenylvinyl)phenyl]anthracene (abbreviation: 20 DPVPA), and the like.

A high molecular compound such as poly(N-vinylcarbazole) (abbreviation: PVK), poly(4-vinyltriphenylamine) (abbreviation: PVTPA), poly[N-(4-{N'-[4-(4-diphenylamino) phenyl]phenyl-N'-phenylamino}phenyl)methacrylamide] (abbreviation: PTPDMA), or poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] (abbreviation: poly-TPD) can also be used.

By providing the hole-injection layer 111, a high hole-injection property can be achieved to allow a light-emitting 30 element to be driven at a low voltage.

The hole-transport layer 112 is a layer that contains a material having a hole-transport property. Examples of the substance having a hole-transport property are aromatic amine compounds such as 4,4'-bis[N-(1-naphthyl)-N-pheny- 35 lamino|biphenyl (abbreviation: NPB), N,N'-bis(3-methylphenyl)-N,Y-diphenyl-[1,1'-biphenyl]-4,4'-diamine (abbreviation: TPD), 4,4',4"-tris(N,N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4',4"-tris[N-(3methylphenyl)-N-phenylamino|triphenylamine (abbreviation: MTDATA), 4,4'-bis[N-(spiro-9,9'-bifluoren-2-yl)-N-phenylamino]biphenyl (abbreviation: BSPB), 4-phenyl-4'-(9-phenylfluoren-9-yl)triphenylamine viation: BPAFLP), and the like. The substances mentioned here have high hole-transport properties and are mainly ones 45 that have a hole mobility of 10^{-6} cm²/Vs or more. An organic compound given as an example of the substance having a hole-transport property in the composite material described above can also be used for the hole-transport layer 112. A high molecular compound such as poly(N-vinylcarbazole) (abbre-50 viation: PVK) or poly(4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used. Note that the layer that contains a substance having a hole-transport property is not limited to a single layer, and may be a stack of two or more layers including any of the above substances.

The light-emitting layer 113 contains at least a light-emitting substance and a thermally activated delayed fluorescent substance. Since the light-emitting layer 113 has the structure described in Embodiment 1, the light-emitting element in this embodiment can have extremely high luminous efficiency. 60 Embodiment 1 can be referred to for the main components of the light-emitting layer 113.

The light-emitting layer 113 having the above-described structure can be deposited by co-evaporation by a vacuum evaporation method, or an inkjet method, a spin coating 65 method, a dip coating method, or the like using a mixed solution.

24

The electron-transport layer 114 is a layer containing a material having an electron-transport property. For example, a layer containing a metal complex having a quinoline skeleton or a benzoquinoline skeleton, such as tris(8-quinolinolato)aluminum (abbreviation: Alq), tris(4-methyl-8-quinoli-Almq₃), nolato)aluminum (abbreviation: bis(10hydroxybenzo[h]quinolinato)beryllium (abbreviation: BeBq₂), or bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (abbreviation: BAlq), or the like can be used. Alternatively, a metal complex having an oxazole-based or thiazole-based ligand, such as bis[2-(2-hydroxyphenyl)benzoxazolato]zinc (abbreviation: Zn(BOX)₂) or bis[2-(2-hydroxyphenyl)benzothiazolato|zinc (abbreviation: Zn(BTZ) 2), or the like can be used. Besides the metal complexes, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4oxadiazol-2-yl]benzene (abbreviation: OXD-7), 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole breviation: TAZ), bathophenanthroline (abbreviation: BPhen), bathocuproine (abbreviation: BCP), or the like can also be used. The substances mentioned here have high electron-transport properties and are mainly ones that have an electron mobility of 10^{-6} cm²/Vs or more. Note that any of the above-described thermally activated delayed fluorescent substances having electron-transport properties may be used for the electron-transport layer 114.

The electron-transport layer 114 is not limited to a single layer, and may be a stack of two or more layers containing any of the above substances.

Between the electron-transport layer and the light-emitting layer, a layer that controls transport of electrons may be provided. This is a layer formed by addition of a small amount of a substance having a high electron-trapping property to the aforementioned material having a high electron-transport property, and the layer is capable of adjusting carrier balance by retarding transport of electron carriers. Such a structure is very effective in preventing a problem (such as a reduction in element lifetime) caused when electrons pass through the light-emitting layer.

In addition, the electron-injection layer 115 may be provided in contact with the second electrode 102 between the electron-transport layer 114 and the second electrode 102. For the electron-injection layer 115, an alkali metal, an alkaline earth metal, or a compound thereof, such as lithium fluoride (LiF), cesium fluoride (CsF), or calcium fluoride (CaF₂), can be used. For example, a layer that is formed using a material having an electron-transport property and contains an alkali metal, an alkaline earth metal, or a compound thereof can be used. Note that a layer that is formed using a material having an electron-transport property and contains an alkali metal or an alkaline earth metal is preferably used as the electron-injection layer 115, in which case electron injection from the second electrode 102 is efficiently performed.

For the second electrode 102, any of metals, alloys, electrically conductive compounds, and mixtures thereof which have a low work function (specifically, a work function of 3.8 eV or less) or the like can be used. Specific examples of such a cathode material are elements belonging to Groups 1 and 2 of the periodic table, such as alkali metals (e.g., lithium (Li) and cesium (Cs)), magnesium (Mg), calcium (Ca), and strontium (Sr), alloys thereof (e.g., MgAg and AlLi), rare earth metals such as europium (Eu) and ytterbium (Yb), alloys thereof, and the like. However, when the electron-injection layer is provided between the second electrode 102 and the electron-transport layer, for the second electrode 102, any of a variety of conductive materials such as Al, Ag, ITO, or indium oxide-tin oxide containing silicon or silicon oxide can

be used regardless of the work function. Films of these electrically conductive materials can be formed by a sputtering method, an inkjet method, a spin coating method, or the like.

Any of a variety of methods can be used to form the EL layer 103 regardless whether it is a dry process or a wet 5 process. For example, a vacuum evaporation method, an inkjet method, a spin coating method, or the like may be used. Different formation methods may be used for the electrodes or the layers.

In addition, the electrode may be formed by a wet method using a sol-gel method, or by a wet method using paste of a metal material. Alternatively, the electrode may be formed by a dry method such as a sputtering method or a vacuum evaporation method.

In the light-emitting element having the above-described 15 structure, current flows due to a potential difference which is generated between the first electrode 101 and the second electrode 102, and holes and electrons recombine in the light-emitting layer 113 which contains a light-emitting substance, so that light is emitted. That is, a light-emitting region is 20 formed in the light-emitting layer 113.

Light emission is extracted out through one or both of the first electrode 101 and the second electrode 102. Therefore, one or both of the first electrode 101 and the second electrode 102 are light-transmitting electrodes. In the case where only 25 the first electrode 101 is a light-transmitting electrode, light emission is extracted through the first electrode 101. In the case where only the second electrode 102 is a light-transmitting electrode, light emission is extracted through the second electrode 102. In the case where both the first electrode 101 and the second electrode 102 are light-transmitting electrodes, light emission is extracted through the first electrode 101 and the second electrode 102.

The structure of the layers provided between the first electrode 101 and the second electrode 102 is not limited to the 35 above-described structure. Preferably, a light-emitting region where holes and electrons recombine is positioned away from the first electrode 101 and the second electrode 102 so that quenching due to the proximity of the light-emitting region and a metal used for electrodes and carrier-injection layers 40 can be prevented.

Further, in order that transfer of energy from an exciton generated in the light-emitting layer can be suppressed, preferably, the hole-transport layer and the electron-transport layer which are in contact with the light-emitting layer 113, 45 particularly a carrier-transport layer in contact with a side closer to the light-emitting region in the light-emitting layer 113, are formed using a substance having a wider band gap than the light-emitting substance.

The light-emitting element in this embodiment is provided 50 over a substrate of glass, plastic, a metal, or the like. As a substrate which transmits light from the light-emitting element, a substrate having a high visible light transmitting property is used. As the way of stacking layers over a substrate which transmits light, layers may be sequentially 55 stacked from the first electrode 101 side or sequentially stacked from the second electrode 102 side. In a light-emitting device, although one light-emitting element may be formed over one substrate, a plurality of light-emitting elements may be formed over one substrate. With a plurality of 60 light-emitting elements as described above formed over one substrate, a lighting device in which elements are separated or a passive-matrix light-emitting device can be manufactured. A light-emitting element may be formed over an electrode electrically connected to a thin film transistor (TFT), for 65 example, which is formed over a substrate of glass, plastic, or the like, so that an active matrix light-emitting device in

26

which the TFT controls the drive of the light-emitting element can be manufactured. Note that there is no particular limitation on the structure of the TFT, which may be a staggered TFT or an inverted staggered TFT. In addition, crystallinity of a semiconductor used for the TFT is not particularly limited either; an amorphous semiconductor or a crystalline semiconductor may be used. In addition, a driver circuit formed in a TFT substrate may be formed with an n-type TFT and a p-type TFT, or with either an n-type TFT or a p-type TFT.

Note that this embodiment can be combined with any of the other embodiments as appropriate.

Embodiment 3

In this embodiment, an example in which the light-emitting element described in Embodiment 1 or 2 is used for a lighting device is described with reference to FIGS. 3A and 3B. FIG. 3B is a top view of the lighting device, and FIG. 3A is a cross-sectional view taken along e-f in FIG. 3B.

In the lighting device in this embodiment, a first electrode **401** is formed over a substrate **400** which is a support and has a light-transmitting property. The first electrode **401** corresponds to the first electrode **101** in Embodiment 2.

An auxiliary electrode 402 is provided over the first electrode 401. Since this embodiment shows an example in which light emission is extracted through the first electrode 401 side, the first electrode 401 is formed using a material having a light-transmitting property. The auxiliary electrode 402 is provided in order to compensate for the low conductivity of the material having a light-transmitting property, and has a function of suppressing luminance unevenness in a light emission surface due to voltage drop caused by the high resistance of the first electrode 401. The auxiliary electrode **402** is formed using a material having at least higher conductivity than the material of the first electrode 401, and is preferably formed using a material having high conductivity such as aluminum Note that surfaces of the auxiliary electrode 402 other than a portion thereof in contact with the first electrode **401** are preferably covered with an insulating layer. This is for suppressing light emission over the upper portion of the auxiliary electrode 402, which cannot be extracted, for reducing a reactive current, and for suppressing a reduction in power efficiency. Note that a pad 412 for applying a voltage to a second electrode 404 may be formed at the same time as the formation of the auxiliary electrode 402.

An EL layer 403 is formed over the first electrode 401 and the auxiliary electrode 402. The EL layer 403 has the structure described in Embodiment 1 or 2. Note that the EL layer 403 is preferably formed to be slightly larger than the first electrode 401 when seen from above so as to also serve as an insulating layer that suppresses a short circuit between the first electrode 401 and the second electrode 404.

The second electrode 404 is formed to cover the EL layer 403. The second electrode 404 corresponds to the second electrode 102 in Embodiment 2 and has a structure similar to the second electrode 102. In this embodiment, it is preferable that the second electrode 404 be formed using a material having high reflectance because light emission is extracted through the first electrode 401 side. In this embodiment, the second electrode 404 is connected to the pad 412, whereby voltage is applied.

As described above, the lighting device described in this embodiment includes a light-emitting element including the first electrode 401, the EL layer 403, and the second electrode 404 (and the auxiliary electrode 402). Since the light-emitting

element has high luminous efficiency, the lighting device in this embodiment can be a lighting device with low power consumption.

The light-emitting element having the above structure is fixed to a sealing substrate 407 with sealing materials 405 and 406 and sealing is performed, whereby the lighting device is completed. It is possible to use only either the sealing material 405 or the sealing material 406. In addition, the inner sealing material 406 can be mixed with a desiccant, whereby moisture is adsorbed and the reliability is increased.

When extended to the outside of the sealing materials 405 and 406, the pad 412, the first electrode 401, and the auxiliary electrode 402 can each partly serve as external input terminal. An IC chip 420 mounted with a converter or the like may be provided over the external input terminals.

As described above, since the lighting device described in this embodiment includes the light-emitting element described in Embodiment 1 or 2 as an EL element, the lighting device can have high luminous efficiency and low power consumption.

Embodiment 4

In this embodiment, a passive matrix light-emitting device manufactured using a light-emitting element described in 25 Embodiment 1 or 2 is described with reference to FIGS. 4A and 4B. FIG. 4A is a perspective view of the light-emitting device, and FIG. 4B is a cross-sectional view taken along the line X-Y in FIG. 4A. In FIGS. 4A and 4B, over a substrate 951, an EL layer 955 is provided between an electrode 952 30 and an electrode 956. An end portion of the electrode 952 is covered with an insulating layer 953. In addition, a partition layer 954 is provided over the insulating layer 953. The sidewalls of the partition layer 954 are aslope such that the distance between both sidewalls is gradually narrowed toward 35 the surface of the substrate. In other words, a cross section taken along the direction of the short side of the partition layer 954 is trapezoidal, and the lower side (a side which is in a direction similar to a plane direction of the insulating layer 953 and is in contact with the insulating layer 953) is shorter 40 than the upper side (a side which is in a direction similar to a plane direction of the insulating layer 953 and is not in contact with the insulating layer 953). By providing the partition layer 954 in this manner, defects of the light-emitting element due to static electricity and the like can be prevented. The 45 passive matrix light-emitting device can have high luminous efficiency and low power consumption by including the lightemitting element in Embodiment 1 or 2.

Embodiment 5

In this embodiment, an active matrix light-emitting device including the light-emitting element described in Embodiment 1 or 2 is described with reference to FIGS. 5A and 5B.

An example of a light-emitting device in which full color 55 display is achieved with the use of a coloring layer and the like is illustrated in FIGS. 5A and 5B. In FIG. 5A, a substrate 1001, a base insulating film 1002, a gate insulating film 1003, gate electrodes 1006, 1007, and 1008, a first interlayer insulating film 1020, a second interlayer insulating film 1021, a 60 peripheral portion 1042, a pixel portion 1040, a driver circuit portion 1041, first electrodes 1024W, 10248, 10246 and 1024B of light-emitting elements, a partition 1025, an EL layer 1028, a second electrode 1029 of the light-emitting elements, a sealing substrate 1031, a sealant 1032a, a sealant 65 1032b, and the like are illustrated. The sealant 1032b can be mixed with a desiccant. Further, coloring layers (a red color-

28

ing layer 1034R, a green coloring layer 1034G, and a blue coloring layer 1034B) are provided on a transparent base material 1033. Further, a black layer (a black matrix) 1035 may be additionally provided. The position of the transparent base material 1033 provided with the coloring layers and the black layer is aligned and the transparent base material 1033 is fixed to the substrate 1001. Note that the coloring layers and the black layer are covered with an overcoat layer 1036. In this embodiment, light emitted from part of the light-emitting layer does not pass through the coloring layers, while light emitted from the other part of the light-emitting layer passes through the coloring layers. Since light which does not pass through the coloring layers is white and light which passes through any one of the coloring layers is red, blue, or green, an image can be displayed using pixels of the four colors.

The above-described light-emitting device is a light-emitting device having a structure in which light is extracted from the substrate 1001 side where the TFTs are formed (a bottom emission structure), but may be a light-emitting device having a structure in which light is extracted from the sealing substrate 1031 side (a top emission structure). FIG. 6 is a crosssectional view of a light-emitting device having a top emission structure. In this case, a substrate which does not transmit light can be used as the substrate 1001. The process up to the step of forming of a connection electrode which connects the TFT and the anode of the light-emitting element is performed in a manner similar to that of the light-emitting device having a bottom emission structure. After that, a third interlayer insulating film 1037 is formed to cover an electrode 1022. This insulating film may have a planarization function. The third interlayer insulating film 1037 can be formed using a material similar to that of the second interlayer insulating film 1021, and can alternatively be formed using any other known

The first electrodes 1024W, 1024R, 1024G, and 1024B of the light-emitting elements each serve as an anode here, but may serve as a cathode. Further, in the case of a light-emitting device having a top emission structure as illustrated in FIG. 6, the first electrodes are preferably reflective electrodes. The EL layer 1028 is formed to have a structure similar to the structure described in Embodiment 1 or 2, with which white light emission can be obtained. As the structure with which white light emission can be obtained, in the case where two EL layers are used, a structure with which blue light is obtained from a light-emitting layer in one of the EL layers and orange light is obtained from a light-emitting layer of the other of the EL layers: a structure in which blue light is obtained from a light-emitting layer of one of the EL layers and red light and green light are obtained from a light-emit-50 ting layer of the other of the EL layers; and the like can be given. Further, in the case where three EL layers are used, red light, green light, and blue light are obtained from respective light-emitting layers, so that a light-emitting element which emits white light can be obtained. Needless to say, the structure with which white light emission is obtained is not limited thereto as long as the structure described in Embodiment 1 or

The coloring layers are each provided in a light path through which light from the light-emitting element passes to the outside of the light-emitting device. In the case of the light-emitting device having a bottom emission structure as illustrated in FIG. 5A, the coloring layers 1034R, 1034G, and 1034B can be provided on the transparent base material 1033 and then fixed to the substrate 1001. The coloring layers may be provided between the gate insulating film 1003 and the first interlayer insulating film 1020 as illustrated in FIG. 5B. In the case of a top emission structure as illustrated in FIG. 6,

sealing can be performed with the sealing substrate 1031 on which the coloring layers (the red coloring layer 1034R, the green coloring layer 1034G, and the blue coloring layer 1034B) are provided. The sealing substrate 1031 may be provided with a black layer (a black matrix) 1035 which is 5 positioned between pixels. The coloring layers (the red coloring layer 1034R, the green coloring layer 1034E and the blue coloring layer 1034B) and the black layer (the black matrix) may be covered with the overcoat layer 1036. Note that a light-transmitting substrate is used as the sealing substrate 1031.

When voltage is applied between the pair of electrodes of the thus obtained light-emitting element, a white light-emitting region 1044W can be obtained. In addition, by using the coloring layers, a red light-emitting region 1044R, a blue 15 light-emitting region 1044B, and a green light-emitting region 1044G can be obtained. The light-emitting device in this embodiment includes the light-emitting element described in Embodiment 1 or 2; thus, a light-emitting device with low driving voltage and low power consumption can be 20 obtained.

Further, although an example in which full color display is performed using four colors of red, green, blue, and white is shown here, there is no particular limitation and full color display using three colors of red, green, and blue may be 25 performed.

This embodiment can be freely combined with any of other embodiments.

Embodiment 6

In this embodiment, examples of electronic devices each including the light-emitting element described in Embodiment 1 or 2 are described. The light-emitting element described in Embodiment 1 or 2 has high luminous efficiency 35 and reduced power consumption. As a result, the electronic devices described in this embodiment can each include a light-emitting portion having reduced power consumption.

Examples of the electronic device to which the above lightemitting element is applied include television devices (also 40 referred to as TV or television receivers), monitors for computers and the like, cameras such as digital cameras and digital video cameras, digital photo frames, mobile phones (also referred to as cell phones or mobile phone devices), portable game machines, portable information terminals, 45 audio playback devices, large game machines such as pachinko machines, and the like. Specific examples of these electronic devices are given below.

FIG. 7A illustrates an example of a television device. In the television device, a display portion 7103 is incorporated in a 50 housing 7101. In addition, here, the housing 7101 can be supported on the wall by a fixing member 7105. Images can be displayed on the display portion 7103, and in the display portion 7103, the light-emitting elements described in Embodiment 1 or 2 are arranged in a matrix. The light-emitting element can have high luminous efficiency. Thus, the television device having the display portion 7103 which is formed using the light-emitting element can have reduced power consumption.

The television device can be operated with an operation 60 switch of the housing **7101** or a separate remote controller **7110**. With operation keys **7109** of the remote controller **7110**, channels and volume can be controlled and images displayed on the display portion **7103** can be controlled. Furthermore, the remote controller **7110** may be provided 65 with a display portion **7107** for displaying data output from the remote controller **7110**.

30

FIG. 7B illustrates a computer, which includes a main body 7201, a housing 7202, a display portion 7203, a keyboard 7204, an external connection port 7205, a pointing device 7206, and the like. Note that this computer is manufactured by using light-emitting elements arranged in a matrix in the display portion 7203, which are the same as that described in Embodiment 1 or 2. The computer illustrated in FIG. 7B may have a structure illustrated in FIG. 7C. A computer illustrated in FIG. 7C is provided with a second display portion 7210 instead of the keyboard 7204 and the pointing device 7206. The second display portion 7210 is a touch screen, and input can be performed by operation of display for input on the second display portion 7210 with a finger or a dedicated pen. The second display portion 7210 can also display images other than the display for input. The display portion 7203 may be also a touch screen. Connecting the two screens with a hinge can prevent troubles; for example, the screens can be prevented from being cracked or broken while the computer is being stored or carried. Note that this computer is manufactured using the light-emitting elements each of which is described in Embodiment 1 or 2 and which are arranged in a matrix in the display portion 7203. The light-emitting elements can have high luminous efficiency. Therefore, this computer having the display portion 7203 which is formed using the light-emitting elements consumes less power.

FIG. 7D illustrates a portable game machine, which includes two housings, a housing 7301 and a housing 7302, which are connected with a joint portion 7303 so that the portable game machine can be opened or folded. The housing 30 7301 incorporates a display portion 7304 including the lightemitting elements described in Embodiment 1 or 2 and arranged in a matrix, and the housing 7302 incorporates a display portion 7305. In addition, the portable game machine illustrated in FIG. 7D includes a speaker portion 7306, a recording medium insertion portion 7307, an LED lamp 7308, an input means (an operation key 7309, a connection terminal 7310, a sensor 7311 (a sensor having a function of measuring force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, odor, or infrared rays), or a microphone 7312), and the like. Needless to say, the structure of the portable game machine is not limited to the above as long as a display portion including the lightemitting elements described in Embodiment 1 or 2 which are arranged in a matrix is used for at least either the display portion 7304 or the display portion 7305, or both, and the structure can include other accessories as appropriate. The portable game machine illustrated in FIG. 7D has a function of reading out a program or data stored in a storage medium to display it on the display portion, and a function of sharing information with another portable game machine by wireless communication. The portable game machine illustrated in FIG. 7D can have a variety of functions without limitation to the above. The portable game machine having the display portion 7304 can consume less power because the light-emitting elements used in the display portion 7304 have high luminous efficiency. Since the light-emitting elements used in the display portion 7304 has low driving voltage, the portable game machine can also be a portable game machine having low driving voltage. Furthermore, since the light-emitting elements used in the display portion 7304 have a long lifetime, the portable game machine can also be a portable game machine having high reliability.

FIG. 7E illustrates an example of a cellular phone. The cellular phone is provided with a display portion **7402** incor-

ments 1 and 2 is used for an indoor lighting device 3001 and a television device 3002. The use of the light-emitting element described in Embodiment 1 or 2 for these lighting devices can make the lighting devices have reduced power consumption, a larger area, and a reduced thickness.

32

porated in a housing 7401, operation buttons 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like. Note that a mobile phone 7400 has the display portion 7402 including the light-emitting elements described in Embodiment 1 or 2 and arranged in a matrix. The light-emitting elements can have high luminous efficiency. In addition, a light-emitting element driven with a low driving voltage can be provided. Furthermore, the light-emitting elements can have a long lifetime. Therefore, this mobile phone having the display portion 7402 which is formed using the light-emitting elements consumes less power. In addition, a mobile phone driven with a low driving voltage can be provided. Further, a mobile phone having high reliability can be provided.

The light-emitting element described in Embodiment 1 or 2 can also be used for an automobile windshield or an automobile dashboard. FIG. 9A illustrates one mode in which the light-emitting elements described in Embodiments 1 and 2 are used for an automobile windshield and an automobile dashboard.

When the display portion **7402** of the mobile phone illustrated in FIG. 7E is touched with a finger or the like, data can be input into the mobile phone. In this case, operations such as making a call and creating an e-mail can be performed by touching the display portion **7402** with a finger or the like.

A display **5000** and a display **5001** are provided in the automobile windshield in which the light-emitting elements described in Embodiment 1 or 2 are incorporated. The light-emitting element described in Embodiment 1 or 2 can be formed into what is called a see-through display device, through which the opposite side can be seen, by including a first electrode and a second electrode formed of electrodes having light-transmitting properties. Such see-through display devices can be provided even in the automobile windshield, without hindering the vision. Note that in the case where a transistor for driving or the like is provided, a transistor having a light-transmitting property, such as an organic transistor using an organic semiconductor material or a transistor using an oxide semiconductor, is preferably used.

There are mainly three screen modes of the display portion **7402**. The first mode is a display mode mainly for displaying an image. The second mode is an input mode mainly for inputting information such as characters. The third mode is a display-and-input mode in which two modes of the display mode and the input mode are combined.

A display 5002 is provided in a pillar portion in which the light-emitting elements described in Embodiment 1 or 2 are incorporated. The display 5002 can compensate for the view hindered by the pillar portion by showing an image taken by an imaging unit provided in the car body. Similarly, a display 5003 provided in the dashboard can compensate for the view hindered by the car body by showing an image taken by an imaging unit provided in the outside of the car body, which leads to elimination of blind areas and enhancement of safety. Showing an image so as to compensate for the area which a driver cannot see makes it possible for the driver to confirm safety easily and comfortably.

For example, in the case of making a call or creating e-mail, a text input mode mainly for inputting text is selected for the display portion **7402** so that text displayed on a screen can be inputted. In this case, it is preferable to display a keyboard or number buttons on almost the entire screen of the display 30 portion **7402**.

A display 5004 and a display 5005 can provide a variety of kinds of information such as navigation data, a speedometer, a tachometer, a mileage, a fuel meter, a gearshift indicator, and air-condition setting. The content or layout of the display can be changed freely by a user as appropriate. Note that such information can also be shown by the displays 5000 to 5003. The displays 5000 to 5005 can also be used as lighting devices.

When a detection device including a sensor such as a gyroscope or an acceleration sensor for detecting inclination is provided inside the mobile phone, screen display of the display portion **7402** can be automatically changed by determining the orientation of the mobile phone (whether the mobile phone is placed horizontally or vertically).

Further, as illustrated in FIG. 9B, the light-emitting element described in Embodiment 1 or 2 may be used for a display portion of the license plate 5011. Accordingly, the visibility of the license plate 5011 can be improved.

The screen modes are switched by touch on the display portion **7402** or operation with the operation buttons **7403** of the housing **7401**. The screen modes can be switched depending on the kind of images displayed on the display portion **7402**. For example, when a signal of an image displayed on the display portion is a signal of moving image data, the screen mode is switched to the display mode. When the signal is a signal of text data, the screen mode is switched to the input mode.

As illustrated in FIG. 9C, the light-emitting element described in Embodiment 1 or 2 may be used for hands 5021 or a display portion 5022 of a watch. Accordingly, without a radioactive substance such as tritium, which is used in a conventional light-emitting watch, the visibility of the watch in a dark place can be improved.

Moreover, in the input mode, when input by touching the display portion **7402** is not performed for a certain period while a signal detected by an optical sensor in the display portion **7402** is detected, the screen mode may be controlled so as to be switched from the input mode to the display mode. 50

As described above, the application range of the light-emitting device having the light-emitting element described in Embodiment 1 or 2 is wide so that this light-emitting device can be applied to electronic devices in a variety of fields. By using the light-emitting element described in Embodiment 1 or 2, an electronic device having low power consumption can be obtained.

The display portion **7402** may function as an image sensor. For example, an image of a palm print, a fingerprint, or the like is taken by the display portion **7402** while in touch with the palm or the finger, whereby personal authentication can be performed. Further, by providing a backlight or a sensing light source which emits a near-infrared light in the display portion, an image of a finger vein, a palm vein, or the like can be taken.

Example 1

Note that the structure described in this embodiment can be combined with any of the structures described in Embodiments 1 to 5 as appropriate.

A table lamp 2003 illustrated in FIG. 8A is an example of

In this example, a light-emitting element in which a mixture of a thermally activated delayed fluorescent substance and a fluorescent material is used for a light-emitting layer and a comparison light-emitting element in which a mixture of a material which does not emit thermally activated delayed

A table lamp 2003 illustrated in FIG. 8A is an example of a lighting device including the light-emitting element described in Embodiment 1 or 2. The table lamp 2003 includes a housing 2001 and a light source 2002, and the light-emitting element described in Embodiments 1 and 2 is 65 used for the light source 2002. FIG. 8B illustrates an example in which the light-emitting element described in Embodi-

fluorescence and a fluorescent material is used for a lightemitting layer were actually formed to be compared with each other. The comparison results are described with reference to FIG. 11 to FIG. 15.

Hereinafter, the light-emitting element 1 is a light-emitting 5 element in which the thermally activated delayed fluorescent substance and the fluorescent material are mixed to be used for a light-emitting layer. The comparison light-emitting element 1 is a light-emitting element in which the material which does not emit thermally activated delayed fluorescence and the fluorescent material are mixed to be used for a lightemitting layer.

The fluorescent material which is used for the light-emitting element 1 and the comparison light-emitting element 1 is 5,6,11,12-tetraphenyl naphthacene (trivial name: rubrene).

As the thermally activated delayed fluorescent substance in the light-emitting element 1, two kinds of organic compounds which form an exciplex were used. Specifically, 2-[3-(dibenzothiophen-4-yl)phenyl]dibenzo[f,h]quinoxaline (abbrevia- 20 tion: 2mDBTPDBq-II) was used as the first organic compound, and 2-[N-(9-phenylcarbazol-3-yl)-N-phenylamino] spiro-9,9'-bifluorene (abbreviation: PCASF) was used as the second organic compound.

As the material which does not emit thermally activated 25 delayed fluorescence in the comparison light-emitting element 1, 2-[3-(dibenzothiophen-4-yl)phenyl]dibenzo[f,h]quinoxaline (abbreviation: 2mDBTPDBq-II) was used. That is, as the material which does not emit thermally activated delayed fluorescence, the first organic compound in the light- 30 emitting element 1 was only used.

Chemical formulae of materials used in this example are shown below.

[Chemical formula 4]

35

PCASE

34

Methods for manufacturing the light-emitting element 1 and the comparison light-emitting element 1 are described below.

55 (Light-Emitting Element 1)

First, a film of indium tin oxide containing silicon oxide (ITSO) was formed over a glass substrate 1100 by a sputtering method, so that a first electrode 1101 functioning as an anode was formed. The thickness thereof was 110 nm and the electrode area was 2 mm×2 mm (see FIG. 11).

Next, as pretreatment for forming the light-emitting element over the substrate 1100, UV ozone treatment was performed for 370 seconds after washing of a surface of the substrate with water and baking that was performed at 200° C. for one hour.

After that, the substrate was transferred into a vacuum evaporation apparatus where the pressure had been reduced to

approximately 10^{-4} Pa, and was subjected to vacuum baking at 170° C. for 30 minutes in a heating chamber of the vacuum evaporation apparatus, and then the substrate **1100** was cooled down for about 30 minutes.

Then, the substrate **1100** over which the first electrode 5 **1101** was formed was fixed to a substrate holder provided in the vacuum evaporation apparatus so that the surface on which the first electrode **1101** was formed faced downward. The pressure in the vacuum evaporation apparatus was reduced to about 10⁻⁴ Pa. After that, over the first electrode **1101**, 1,3,5-tri(dibenzothiophen-4-yl)-benzene (abbreviated as DBT3P-II) and molybdenum oxide were deposited by co-evaporation, so that a hole-injection layer **1111** was formed. The thickness of the hole-injection layer **1111** was set to 40 nm, and the weight ratio of DBT3P-II to molybdenum oxide was adjusted to 1:0.5.

Next, a film of BPAFLP (abbreviation) was formed to a thickness of 20 nm over the hole-injection layer 1111 to form a hole-transport layer 1112.

2mDBTPDBq-II (abbreviation), PCASF (abbreviation), and rubrene were deposited by co-evaporation so that a light-emitting layer 1113 is formed over the hole-transport layer 1112. The weight ratio of 2mDBTPDBq-II to PCASF and rubrene was adjusted to be 0.8:0.2:0.01 (=2mDBTPDBq-II: 25 PCASF:rubrene). The thickness of the light-emitting layer 1113 was set to 30 nm.

Next, over the light-emitting layer **1113**, a film of 2mDBT-PDBq-II (abbreviation) was formed to a thickness of 20 nm to form a first electron-transport layer **1114***a*.

Next, a film of bathophenanthroline (abbreviation: BPhen) was formed to a thickness of 20 nm over the first electron-transport layer 1114a to form a second electron-transport layer 1114b.

Lithium fluoride (LW) was deposited over the second electron-transport layer **1114***b* by evaporation to a thickness of 1 nm, so that an electron-injection layer **1115** was formed.

Lastly, a 200 nm thick film of aluminum was deposited by evaporation to form a second electrode 1103 functioning as a cathode. Thus, Light-emitting Element 1 of this example was 40 fabricated.

(Comparison Light-Emitting Element 1)

The light-emitting layer 1113 of the comparison light-emitting element 1 was deposited by co-evaporation of 2mDBTPDBq-II (abbreviation) and rubrene. The weight 45 ratio of 2mDBTPDBq-II (abbreviation) to rubrene was adjusted to be 1:0.01 (=2mDBTPDBq-II:rubrene). The thickness of the light-emitting layer 1113 was set to 30 nm Components other than the light-emitting layer 1113 were manufactured in a manner similar to that of the light-emitting 50 element 1.

Note that in all the above evaporation steps, evaporation was performed by a resistance-heating method.

Element structures of the light-emitting element 1 and the comparison light-emitting element 1 obtained as described 55 above are shown in Table 1.

TABLE 1

	Light-emitting Element 1	Comparison Light- emitting Element 1
Electron-injection Layer	LiF	LiF
	1 nm	1 nm
Electron-transport Layer	BPhen	BPhen
	20 nm	20 nm
	2mDBTPDBq-II	2mDBTPDBq-II
	20 nm	20 nm

36
TABLE 1-continued

		Light-emitting Element 1	Comparison Light- emitting Element 1
5	Light-emitting Layer	2mDBTPDBq-II:	2mDBTPDBq-II:
		PCASF:Rubrene	Rubrene
		(=0.8:0.2:0.01)	(=0.8:0.01)
		30 nm	30 nm
	Hole-transport Layer	BPAFLP	BPAFLP
		20 nm	20 nm
0	Hole-injection Layer	DBT3P-II:MoOx	DBT3P-II:MoOx
		(=1:0.5)	(=1:0.5)
		20 nm	20 nm

*First Electrode: Indium Tin Oxide Containing Silicon Oxide 110 nm

These light-emitting elements were each sealed in a glove box containing a nitrogen atmosphere so as not to be exposed to the air. Then, operation characteristics of these light-emitting elements were measured. Note that the measurements were carried out at room temperature (in an atmosphere kept at 25° C.).

FIG. 12 shows voltage-luminance characteristics of the light-emitting element 1 and the comparison light-emitting element 1. In FIG. 12, the horizontal axis represents voltage (V) and the vertical axis represents luminance (cd/m²). FIG. 13 shows luminance-current efficiency characteristics. In FIG. 13, the horizontal axis indicates luminance (cd/m²) and the vertical axis indicates current efficiency (cd/A). FIG. 14 shows luminance-power efficiency characteristics thereof. In FIG. 14, the horizontal axis represents luminance (cd/m²), and the vertical axis represents power efficiency (lm/W). In addition, FIG. 15 shows luminance-external quantum efficiency characteristics thereof. In FIG. 15, the horizontal axis represents luminance (cd/m²) and the vertical axis represents external quantum efficiency (%).

Further, Table 2 shows the voltage (V), current density (mA/cm²), CIE chromaticity coordinates (x, y), current efficiency (cd/A), power efficiency (hn/W), and external quantum efficiency (%) of each of the light-emitting element 1 and the comparison light-emitting element 1 at a luminance of around 1000 cd/m².

TABLE 2

	Light-emitting Element 1	Comparison Light- emitting Element 1
Voltage (V)	3.6	4.2
Current Density (mA/cm ²)	6.5	10.5
Chromaticity (x, y)	(0.47, 0.52)	(0.46, 0.50)
Luminance (cd/m ²)	950	1130
Current Efficiency (cd/A)	15	11
Power Efficiency (lm/W)	13	8
External Quantum Efficiency (%)	4.3	3.2

As shown in Table 2, CIE chromaticity coordinates of the light-emitting element 1 at luminance of around 1000 cd/m^2 were (x,y)=(0.47,0.52), and CIE chromaticity coordinates of the comparison light-emitting element 1 at luminance of around 1000 cd/m^2 were (x,y)=(0.46,0.50). These results show that the light-emitting element 1 and the comparison light-emitting element 1 emit yellow light derived from rubrene.

As apparent from Table 2, FIG. 12, FIG. 13, FIG. 14, and 65 FIG. 15, the light-emitting element 1 has a low threshold voltage at which the fluorescent material starts to emit light (light emission start voltage), high current efficiency, high

power efficiency, and high external quantum efficiency as compared to the comparison light-emitting element 1. Since 2mDBTPDBq-II and PCASF which are used for the light-emitting layer 1113 form an exciplex, a singlet excited state is formed from part of a triplet excited state of the exciplex in the 5 light-emitting layer 1113. The reason why the luminous efficiency was improved is considered to be because of the energy transfer of this singlet excited state of the exciplex to the singlet excited state of the fluorescent material. The reason why the light emission start voltage was lowered is considered to be because of the formation of this exciplex.

Example 2

In this example, as in Example 1, a light-emitting element in which a mixture of a thermally activated delayed fluorescent substance and a fluorescent material is used for a light-emitting layer and a comparison light-emitting element in which a mixture of a material which does not emit thermally activated delayed fluorescence and a fluorescent material is used for a light-emitting layer are manufactured to be compared with each other. The comparison results are described with reference to FIG. 16 to FIG. 22.

Hereinafter, the light-emitting element 2 is a light-emitting element in which the thermally activated delayed fluorescent substance and the fluorescent material are mixed to be used 25 for a light-emitting layer. The comparison light-emitting element 2 is a light-emitting element in which the material which does not emit thermally activated delayed fluorescence and the fluorescent material are mixed to be used for a light-emitting layer.

The fluorescent material which is used for the light-emitting element 2 and the comparison light-emitting element 2 is 5,6,11,12-tetraphenyl naphthacene (trivial name-rubrene).

As the thermally activated delayed fluorescent substance in the light-emitting element 2, two kinds of organic compounds which form an exciplex were used. Specifically, 4,6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm) was used as the first organic compound, and N-(1,1'-biphenyl-4-yl)-N-[4-(9-phenyl-9H-carbazol-3-yl) phenyl]-9,9-dimethyl-9H-fluor en-2-amine (abbreviation: PCBBiF) was used as the second organic compound.

As the material which does not emit thermally activated delayed fluorescence in the comparison light-emitting element 2, 4,6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm) was used. That is, as the material which does not emit thermally activated delayed fluorescence, the first organic compound in the light-emitting element 2 was only used.

Chemical formulae of materials used in this example are shown below.

4,6mCzP2Pm

Methods for manufacturing the light-emitting element 2 and the comparison light-emitting element 2 are described below.

(Light-Emitting Element 2)

First, the first electrode 1101, the hole-injection layer 1111, 20 and the hole-transport layer 1112 were formed over the glass substrate 1100 using a material and a method similar to those of the light-emitting element 1.

Next, 4,6mCzP2Pm (abbreviation), PCBBiF (abbreviation), and rubrene were deposited by co-evaporation, so that the light-emitting layer **1113** was formed over the hole-transport layer **1112**. The weight ratio of 4,6mCzP2Pm to PCBBiF and rubrene was adjusted to be 0.8:0.2:0.0075 (=4,6mCzP2Pm:PCBBiF:rubrene). The thickness of the light-emitting layer **1113** was set to 40 nm.

Further, over the light-emitting layer 1113, a film of 4,6mCzP2Pm (abbreviation) was formed to a thickness of 10 nm to form the first electron-transport layer 1114a.

Next, a film of bathophenanthroline (abbreviation: BPhen) 35 was formed to a thickness of 15 nm over the first electron-transport layer **1114***a* to form the second electron-transport layer **1114***b*.

Further, the electron-injection layer **1115** and a second electrode were formed using a material and a condition similar to the material and the condition for the electron-injection layer **1115** and the second electrode of the light-emitting element 1, so that the light-emitting element 2 in this example was formed.

(Comparison Light-Emitting Element 2)

The light-emitting layer 1113 of the comparison light-emitting element 2 was deposited by co-evaporation of 4,6mCzP2Pm (abbreviation) and rubrene. The weight ratio of 4,6mCzP2Pm and rubrene was adjusted to be 1:0.005 (=4, 6mCzP2Pm: rubrene). The thickness of the light-emitting layer 1113 was set to 40 nm. Components other than the light-emitting layer 1113 were manufactured in a manner similar to that of the light-emitting element 2.

Note that in all the above evaporation steps, evaporation 55 was performed by a resistance-heating method.

Element structures of the light-emitting element 2 and the comparison light-emitting element 2 obtained as described above are shown in Table 3.

TABLE 3

60

	Light-emitting Element 2	Comparison Light- emitting Element 2
Electron-injection Layer	LiF 1 mm	LiF 1 nm

40
TABLE 3-continued

		Light-emitting Element 2	Comparison Light- emitting Element 2
5	Electron-transport Layer	BPhen	BPhen
		15 nm	15 nm
		4,6mCzP2Pm	4,6mCzP2Pm
		10 nm	10 nm
	Light-emitting Layer	4,6mCzP2Pm:	4,6mCzP2Pm:
		PCBBiF:	Rubrene
10		Rubrene	(=1:0.005)
		(=0.8:0.2:0.0075)	40 nm
		40 nm	
	Hole-transport Layer	BPAFLP	BPAFLP
		20 nm	20 nm
	Hole-injection Layer	DBT3P-II:MoOx	DBT3P-II:MoOx
15		(=1:0.5)	(=1:0.5)
13		20 nm	20 nm

*First Electrode: Indium Tin Oxide Containing Silicon Oxide 110 nm Second Electrode: Al 200 nm

These light-emitting elements were each sealed in a glove box containing a nitrogen atmosphere so as not to be exposed to the air. Then, operation characteristics of these light-emitting elements were measured. Note that the measurements were carried out at room temperature (in an atmosphere kept at 25° C.).

FIG. 16 shows voltage-luminance characteristics of the light-emitting element 2 and the comparison light-emitting element 2. In FIG. 16, the horizontal axis represents voltage (V) and the vertical axis represents luminance (cd/m²). FIG. 17 shows luminance-current efficiency characteristics. In FIG. 17, the horizontal axis indicates luminance (cd/m²) and the vertical axis indicates current efficiency (cd/A). FIG. 18 shows voltage-current characteristics. In FIG. 18, the horizontal axis indicates voltage (V) and the vertical axis indicates current (mA). FIG. 19 shows luminance-power efficiency characteristics thereof. In FIG. 19, the horizontal axis represents luminance (cd/m²), and the vertical axis represents power efficiency (lm/W). In addition, FIG. 20 shows luminance-external quantum efficiency characteristics thereof. In FIG. 20, the horizontal axis represents luminance (cd/m²) and the vertical axis represents external quantum efficiency (%).

Further, Table 4 shows the voltage (V), current density (mA/cm²), CIE chromaticity coordinates (x, y), current efficiency (cd/A), power efficiency (lm/W), and external quantum efficiency (%) of each of the light-emitting element 2 and the comparison light-emitting element 2 at a luminance of around 1000 cd/m².

TABLE 4

	Light-emitting Element 2	Comparison Light- emitting Element 2
Voltage (V)	3.5	4.2
Current Density (mA/cm ²)	4.4	9.1
Chromaticity (x, y)	(0.47, 0.52)	(0.47, 0.50)
Luminance (cd/m ²)	972	1076
Current Efficiency (cd/A)	22	12
Power Efficiency (lm/W)	20	9
External Quantum Efficiency (%)	6.5	3.6

As shown in Table 4, OE chromaticity coordinates of the light-emitting element 2 at luminance of around 1000 cd/m^2 were (x,y)=(0.47,0.52), and CW chromaticity coordinates of

the comparison light-emitting element 2 at luminance of around $1000 \text{ cd/m}^2 \text{ were } (x,y) = (0.47, 0.50).$

FIG. 21 shows emission spectra of the light-emitting element 2 and the comparison light-emitting element 2 which were obtained by applying a current of 0.1 mA. In FIG. 21, the 5 vertical axis represents emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). The emission intensity is shown as a value relative to the maximum emission intensity assumed to be 1. As shown in FIG. 21, the light-emitting element 2 and the comparison light-emitting element 2 each show a spectrum having a maximum emission wavelength at around 558 nm, which is derived from rubrene. This and the results of Table 4 show that the light-emitting element 2 and the comparison light-emitting element 2 emit yellow light.

The reliability tests were carried out, and the results thereof are shown in FIG. 22. In the reliability tests, the light-emitting element 2 and the comparison light-emitting element 2 were driven under the conditions where the initial luminance was set to 5000 cd/m² and the current density was constant. FIG. 20 22 shows a change in normalized luminance where the initial luminance is 100%.

As apparent from Table 4, FIG. **16** to FIG. **22**, the light-emitting element 2 has a low threshold voltage at which the fluorescent material starts to emit light (light emission start voltage), high current efficiency, high power efficiency, and high external quantum efficiency as compared to the comparison light-emitting element 2. The light-emitting element 2 is a highly-reliable light-emitting element which shows a small luminance decrease relative to driving time.

Since 4,6mCzP2Pm and PCBBiF which are used for the light-emitting layer 1113 form an exciplex, a singlet excited state is formed from part of a triplet excited state of the exciplex in the light-emitting layer 1113. The reason why the luminous efficiency was improved is considered to be 35 because of the energy transfer of this singlet excited state of the exciplex to the singlet excited state of the fluorescent material. The reason why the light emission start voltage was lowered is considered to be because of the formation of this exciplex.

Example 3

In this example, as in Example 1, a light-emitting element in which a mixture of a thermally activated delayed fluorescent substance and a fluorescent material is used for a light-emitting layer and a comparison light-emitting element in which a mixture of a material which does not emit thermally activated delayed fluorescence and a fluorescent material is used for a light-emitting layer are manufactured to be compared with each other. The comparison results are described with reference to FIG. 23 to FIG. 29.

Hereinafter, the light-emitting element 3 is a light-emitting element in which the thermally activated delayed fluorescent substance and the fluorescent material are mixed to be used 55 for a light-emitting layer. The comparison light-emitting element 3 is a light-emitting element in which the material which does not emit thermally activated delayed fluorescence and the fluorescent material are mixed to be used for a light-emitting layer.

The fluorescent material which is used for the light-emitting element 3 and the comparison light-emitting element 3 is coumarin 6 (trivial name).

As the thermally activated delayed fluorescent substance in the light-emitting element 3, the two kinds of organic compounds which form an exciplex and which are the same as the organic compounds in Example 2 were used. Specifically, 42

4,6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm) was used as the first organic compound, and N-(1,1'-biphenyl-4-yl)-N-[4-(9-phenyl-9H-carbazol-3-yl)phenyl]-9,9-dimethyl-9H-fluor ene-2-amine (abbreviation: PCBBiF) was used as the second organic compound.

As the material which does not emit thermally activated delayed fluorescence in the comparison light-emitting element 3, 4,6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm), which is the same as the one in Example 2, was used. That is, as the material which does not emit thermally activated delayed fluorescence, the first organic compound in the light-emitting element 3 was only used.

For the chemical formulae of the materials used in this example, the chemical formulae in Example 2 can be referred to.

Methods for manufacturing the light-emitting element 3 and the comparison light-emitting element 3 are described below

(Light-Emitting Element 3)

First, the first electrode 1101, the hole-injection layer 1111, and the hole-transport layer 1112 were formed over the glass substrate 1100 using a material and a method similar to those of the light-emitting element 1.

Next, 4,6mCzP2Pm (abbreviation), PCBBiF (abbreviation), and coumarin 6 were deposited by co-evaporation, so that the light-emitting layer 1113 was formed over the hole-transport layer 1112. The weight ratio of 4,6mCzP2Pm to PCBBiF and coumarin 6 was adjusted to be 0.8:0.2:0.005 (=4,6mCzP2Pm:PCBBiF:coumarin 6). The thickness of the light-emitting layer 1113 was set to 40 nm.

Further, over the light-emitting layer **1113**, a film of 4,6mCzP2Pm (abbreviation) was formed to a thickness of 10 nm to form the first electron-transport layer **1114***a*.

Next, a film of bathophenanthroline (abbreviation: BPhen) was formed to a thickness of 15 nm over the first electron-transport layer **1114***a* to form the second electron-transport layer **1114***b*.

Further, the electron-injection layer 1115 and a second electrode were formed using a material and a condition similar to the material and the condition for the electron-injection layer 1115 and the second electrode of the light-emitting element 1, so that the light-emitting element 3 in this example was formed.

(Comparison Light-Emitting Element 3)

The light-emitting layer 1113 of the comparison light-emitting element 3 was deposited by co-evaporation of 4,6mCzP2Pm (abbreviation) and coumarin 6. The weight ratio of 4,6mCzP2Pm and coumarin 6 was adjusted to be 1:0.005 (=4,6mCzP2Pm:coumarin 6). The thickness of the light-emitting layer 1113 was set to 40 nm. Components other than the light-emitting layer 1113 were manufactured in a manner similar to that of the light-emitting element 3.

Note that in all the above evaporation steps, evaporation was performed by a resistance-heating method.

Element structures of the light-emitting element 3 and the comparison light-emitting element 3 obtained as described above are shown in Table 5.

TABLE 5

II IDDE		
	Light-emitting Element 3	Comparison Light- emitting Element 3
Electron-injection Layer	LiF	LiF
	1 nm	1 nm
Electron-transport Layer	BPhen	Bphen
	15 nm	15 nm
	4,6mCzP2Pm	4,6mCzP2Pm
	10 nm	10 nm

	Light-emitting Element 3	Comparison Light- emitting Element 3
Light-emitting Layer	4,6mCzP2Pm: PCBBiF:	4,6mCzP2Pm: Coumarin6
	Coumarin6	(=1:0.005)
	(=0.8:0.2:0.005)	40 nm
	40 nm	
Hole-transport Layer	BPAFLP	BPAFLP
	20 nm	20 nm
Hole-injection Layer	DBT3P-II:MoOx	DBT3P-II:MoOx
	(=1:0.5)	(=1:0.5)
	20 nm	20 nm

^{*}First Electrode: Indium Tin Oxide Containing Silicon Oxide 110 nm Second Electrode: Al 200 nm

These light-emitting elements were each sealed in a glove box containing a nitrogen atmosphere so as not to be exposed to the air. Then, operation characteristics of these light-emitting elements were measured. Note that the measurements were carried out at room temperature (in an atmosphere kept at 25° C.).

FIG. 23 shows voltage-luminance characteristics of the light-emitting element 3 and the comparison light-emitting element 3. In FIG. 23, the horizontal axis represents voltage 25 (V) and the vertical axis represents luminance (cd/m²). FIG. 24 shows luminance-current efficiency characteristics. In FIG. 24, the horizontal axis indicates luminance (cd/m²) and the vertical axis indicates current efficiency (cd/A). FIG. 25 shows voltage-current characteristics. In FIG. 25, the horizontal axis indicates voltage (V) and the vertical axis indicates current (mA). FIG. 26 shows luminance-power efficiency characteristics thereof. In FIG. 26, the horizontal axis represents luminance (cd/m²), and the vertical axis represents power efficiency (lm/W). In addition, FIG. 27 shows lumi- 35 nance-external quantum efficiency characteristics thereof. In FIG. 27, the horizontal axis represents luminance (cd/m²) and the vertical axis represents external quantum efficiency (%).

Further, Table 6 shows the voltage (V), current density (mA/cm²), CIE chromaticity coordinates (x, y), current efficiency (cd/A), power efficiency (lm/W), and external quantum efficiency (%) of each of the light-emitting element 3 and the comparison light-emitting element 3 at a luminance of around 1000 cd/m².

TABLE 6

	Light-emitting Element 3	Comparison Light- emitting Element 3
Voltage (V)	3.5	3.9
Current Density (mA/cm ²)	7.6	10.8
Chromaticity (x, y)	(0.28, 0.60)	(0.26, 0.58)
Luminance (cd/m ²)	1087	865
Current Efficiency (cd/A)	14	8
Power Efficiency (lm/W)	13	6
External Quantum Efficiency (%)	4.5	2.6

As shown in Table 6, CIE chromaticity coordinates of the light-emitting element 3 at luminance of around 1000 cd/m^2 were (x,y)=(0.28,0.60), and CIE chromaticity coordinates of the comparison light-emitting element 3 at luminance of around 1000 cd/m^2 were (x,y)=(0.26,0.58).

FIG. 28 shows emission spectra of the light-emitting element 3 and the comparison light-emitting element 3 which

44

were obtained by applying a current of 0.1 mA. In FIG. 28, the vertical axis represents emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). The emission intensity is shown as a value relative to the maximum emission intensity assumed to be 1. As shown in FIG. 28, the light-emitting element 3 and the comparison light-emitting element 3 each show a spectrum having a maximum emission wavelength at around 500 nm, which is derived from coumarin 6. This and the results of Table 6 show that the light-emitting element 3 emit green light.

The reliability tests were carried out, and the results thereof is shown in FIG. **29**. In the reliability tests, the light-emitting element 3 and the comparison light-emitting element 3 were driven under the conditions where the initial luminance was set to 5000 cd/m² and the current density was constant. FIG. **29** shows a change in normalized luminance where the initial luminance is 100%.

As apparent from Table 6, FIG. 23 to FIG. 29, the lightemitting element 3 has a low threshold voltage at which the fluorescent material starts to emit light (light emission start voltage), high current efficiency, high power efficiency, and high external quantum efficiency as compared to the comparison light-emitting element 3. The light-emitting element 3 is a highly-reliable light-emitting element which shows a small luminance decrease relative to driving time.

Since 4,6mCzP2Pm and PCBBiF which are used for the light-emitting layer 1113 form an exciplex, a singlet excited state is formed from part of a triplet excited state of the exciplex in the light-emitting layer 1113. The reason why the luminous efficiency was improved is considered to be because of the energy transfer of this singlet excited state of the exciplex to the singlet excited state of the fluorescent material. The reason why the light emission start voltage was lowered is considered to be because of the formation of this exciplex.

Example 4

In this example, as in Example 1, a light-emitting element in which a mixture of a thermally activated delayed fluorescent substance and a fluorescent material is used for a light-emitting layer and a comparison light-emitting element in which a mixture of a material which does not emit thermally activated delayed fluorescence and a fluorescent material is used for a light-emitting layer are manufactured to be compared with each other. The comparison results are described with reference to FIG. 30 to FIG. 35.

Hereinafter, the light-emitting element 4 is a light-emitting element in which the thermally activated delayed fluorescent substance and the fluorescent material are mixed to be used for a light-emitting layer. The comparison light-emitting element 4 is a light-emitting element in which the material which does not emit thermally activated delayed fluorescence and the fluorescent material are mixed to be used for a light-emitting layer.

The fluorescent material which is used for the light-emitting element 3 and the comparison light-emitting element 3 is {2-tert-butyl-6-[2-(1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran-4-ylidene}propanedinitrile (abbreviation: DCJTB).

As the thermally activated delayed fluorescent substance in the light-emitting element 4, two kinds of organic compounds which form an exciplex and are the same as the organic compounds in Example 2 were used. Specifically, 4,6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm) was used as the first organic compound, and

N-(1,1'-biphenyl-4-yl)-N-[4-(9-phenyl-9H-carbazol-3-yl) phenyl]-9,9-dimethyl-9H-fluor ene-2-amine (abbreviation: PCBBiF) was used as the second organic compound.

As the material which does not emit thermally activated delayed fluorescence in the comparison light-emitting element 4, 6-bis[3-(9H-carbazol-9-yl)-phenyl]pyrimidine (abbreviation: 4,6mCzP2Pm), which is the same as the one in Example 2, was used. That is, as the material which does not emit thermally activated delayed fluorescence, the first organic compound in the light-emitting element 4 was only 10 used.

For the chemical formulae of the materials used in this example, the chemical formulae in Example 2 can be referred to.

Methods for manufacturing the light-emitting element 4 15 and the comparison light-emitting element 4 are described below.

(Light-Emitting Element 4)

First, the first electrode 1101, the hole-injection layer 1111, and the hole-transport layer 1112 were formed over the glass 20 substrate 1100 using a material and a method similar to those of the light-emitting element 1.

Next, 4,6mCzP2Pm (abbreviation), PCBBiF (abbreviation), and DCJTB (abbreviation) were deposited by co-evaporation, so that the light-emitting layer 1113 was 25 formed over the hole-transport layer 1112. The weight ratio of 4,6mCzP2Pm to PCBBiF and DCJTB was adjusted to be 0.8:0.2:0.005 (=4,6mCzP2Pm:PCBBiF:DCJTB). The thickness of the light-emitting layer 1113 was set to 40 nm.

Further, over the light-emitting layer **1113**, a film of 30 4,6mCzP2Pm (abbreviation) was formed to a thickness of 10 nm to form the first electron-transport layer **1114***a*.

Next, a film of bathophenanthroline (abbreviation: BPhen) was formed to a thickness of 15 nm over the first electron-transport layer **1114***a* to form the second electron-transport 35 layer **1114***b*.

Further, the electron-injection layer 1115 and a second electrode were formed using a material and a condition similar to the material and the condition for the electron-injection layer 1115 and the second electrode of the light-emitting 40 element 1, so that the light-emitting element 4 in this example was formed.

(Comparison Light-Emitting Element 4)

The light-emitting layer 1113 of the comparison light-emitting element 3 was deposited by co-evaporation of 45 4,6mCzP2Pm (abbreviation) and DCJTB (abbreviation). The weight ratio of 4,6mCzP2Pm and DCJTB was adjusted to be 1:0.005 (=4,6mCzP2Pm:DCJTB). The thickness of the light-emitting layer 1113 was set to 40 nm Components other than the light-emitting layer 1113 were manufactured in a manner 50 similar to that of the light-emitting element 4.

Note that in all the above evaporation steps, evaporation was performed by a resistance-heating method.

Element structures of the light-emitting element 4 and the comparison light-emitting element 4 obtained as described 55 above are shown in Table 7.

TABLE 7

	Light-emitting Element 4	Comparison Light- emitting Element 4
Electron-injection Layer	LiF	LiF
	1 nm	1 nm
Electron-transport Layer	Bphen	BPhen
	15 nm	15 nm
	4,6mCzP2Pm	4,6mCzP2Pm
	10 nm	10 nm

60

46
TABLE 7-continued

	Light-emitting Element 4	Comparison Light- emitting Element 4
Light-emitting Layer	4,6mCzP2Pm: PCBBiF:	4,6mCzP2Pm: :DCJTB
	:DCJTB	(=1:0.005)
	(=0.8:0.2:0.005)	40 nm
	40 nm	
Hole-transport Layer	BPAFLP	BPAFLP
	20 nm	20 nm
Hole-injection Layer	DBT3P-II:MoOx	DBT3P-II:MoOx
	(=1:0.5)	(=1:0.5)
	20 nm	20 nm

*First Electrode: Indium Tin Oxide Containing Silicon Oxide 110 nm Second Electrode: Al 200 nm

These light-emitting elements were each sealed in a glove box containing a nitrogen atmosphere so as not to be exposed to the air. Then, operation characteristics of these light-emitting elements were measured. Note that the measurements were carried out at room temperature (in an atmosphere kept at 25° C.).

FIG. 30 shows voltage-luminance characteristics of the light-emitting element 3 and the comparison light-emitting element 3. In FIG. 30, the horizontal axis represents voltage (V) and the vertical axis represents luminance (cd/m²). FIG. 31 shows luminance-current efficiency characteristics. In FIG. 31, the horizontal axis indicates luminance (cd/m²) and the vertical axis indicates current efficiency (cd/A). FIG. 32 shows voltage-current characteristics. In FIG. 32, the horizontal axis indicates voltage (V) and the vertical axis indicates current (mA). FIG. 33 shows luminance-power efficiency characteristics thereof. In FIG. 33, the horizontal axis represents luminance (cd/m²), and the vertical axis represents power efficiency (lm/W). In addition, FIG. 34 shows luminance-external quantum efficiency characteristics thereof. In FIG. 34, the horizontal axis represents luminance (cd/m²) and the vertical axis represents external quantum efficiency (%).

Further, Table 8 shows the voltage (V), current density (mA/cm²), CIE chromaticity coordinates (x, y), current efficiency (cd/A), power efficiency (lm/W), and external quantum efficiency (%) of each of the light-emitting element 4 and the comparison light-emitting element 4 at a luminance of around 1000 cd/m².

TABLE 8

	Light-emitting Element 4	Comparison Light- emitting Element 4
Voltage (V)	4.4	6.2
Current Density (mA/cm ²)	8.2	16.8
Chromaticity (x, y)	(0.57, 0.43)	(0.56, 0.41)
Luminance (cd/m ²)	1075	976
Current Efficiency (cd/A)	13	6
Power Efficiency (lm/W)	9	3
External Quantum Efficiency (%)	5.4	2.5

As shown in Table 8, CIE chromaticity coordinates of the light-emitting element 4 at luminance of around 1000 cd/m^2 were (x,y)=(0.57, 0.43), and CIE chromaticity coordinates of the comparison light-emitting element 4 at luminance of around 1000 cd/m^2 were (x,y)=(0.56, 0.41).

FIG. 35 shows emission spectra of the light-emitting element 4 and the comparison light-emitting element 4 which

were obtained by applying a current of 0.1 mA. In FIG. 35, the vertical axis represents emission intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). The emission intensity is shown as a value relative to the maximum emission intensity assumed to be 1. As shown in FIG. 35, the 5 light-emitting element 4 and the comparison light-emitting element 4 each show a spectrum having a maximum emission wavelength at around 595 nm, which is derived from DCJTB. This and the results of Table 8 show that the light-emitting element 4 and the comparison light-emitting element 4 emit 10 yellow light.

The reliability tests were carried out, and the results thereof is shown in FIG. 36. In the reliability tests, the light-emitting element 4 and the comparison light-emitting element 4 were driven under the conditions where the initial luminance was 15 set to 5000 cd/m² and the current density was constant. FIG. 36 shows a change in normalized luminance where the initial luminance is 100%.

As apparent from Table 8, FIG. 30 to FIG. 36, the lightemitting element 4 has a low threshold voltage at which the 20 fluorescent material starts to emit light (light emission start voltage), high current efficiency, high power efficiency, and high external quantum efficiency as compared to the comparison light-emitting element 4. The light-emitting element 4 is a highly-reliable light-emitting element which shows a small 25 luminance decrease relative to driving time.

Since 4,6mCzP2Pm and PCBBiF which are used for the light-emitting layer 1113 form an exciplex, a singlet excited state is formed from part of a triplet excited state of the exciplex in the light-emitting layer 1113. The reason why the 30 luminous efficiency was improved is considered to be because of the energy transfer of this singlet excited state of the exciplex to the singlet excited state of the fluorescent material. The reason why the light emission start voltage was lowered is considered to be because of the formation of this 35

This application is based on Japanese Patent Application serial No. 2012-172830 filed with Japan Patent Office on Aug. 3, 2012, the entire contents of which are hereby incorporated by reference.

What is claimed is:

- 1. A light-emitting element comprising:
- a pair of electrodes; and
- an EL layer between the pair of electrodes,
- wherein the EL layer comprises a light-emitting layer,
- wherein the light-emitting layer comprises a first organic compound, a second organic compound, and a fluorescent material,
- wherein the first organic compound and the second organic compound form an exciplex which exhibits thermally 50 activated delayed fluorescence, and
- wherein, in the exciplex, a difference between levels of a triplet excited state and a singlet excited state is 0.2 eV or less.
- wherein light emission of the exciplex is overlapped with an absorption band on a lowest energy side of the fluorescent material.
- 3. The light-emitting element according to claim 2, wherein a difference in energy between a peak wavelength of 60 the absorption band on the lowest energy side of the fluorescent material and a peak wavelength of the exciplex is 0.2 eV or less.
- 4. The light-emitting element according to claim 2, wherein a peak wavelength of light emission of the exciplex is 65 longer than or equal to a peak wavelength of the absorption band on the lowest energy side of the fluorescent material.

48

- 5. The light-emitting element according to claim 2, wherein a difference between a peak wavelength of light emission of the exciplex and a peak wavelength of light emission of the fluorescent material is 30 nm or less.
- 6. The light-emitting element according to claim 1. wherein one of the first organic compound and the second organic compound is a material having an electron-transport property and the other is a material having a hole-transport property.
- 7. The light-emitting element according to claim 1, wherein one of the first organic compound and the second organic compound is a n-electron deficient heteroaromatic compound and the other is a n-electron rich heteroaromatic compound or an aromatic amine compound.
- 8. The light-emitting element according to claim 1, wherein the first organic compound is different from the second organic compound.
 - 9. The light-emitting element according to claim 1, wherein the exciplex generates the singlet excited state from the triplet excited state, and
 - wherein an energy is transferred to from a level of the singlet excited state of the exciplex to a level of a single exited state of the fluorescent material.
 - 10. A light-emitting element comprising:

a pair of electrodes; and

- an EL layer between the pair of electrodes,
- wherein the EL layer comprises a light-emitting layer,
- wherein the light-emitting layer comprises a thermally activated delayed fluorescence substance and a fluorescent material,
- wherein the thermally activated delayed fluorescence substance comprises a first organic compound and a second organic compound, wherein the first organic compound and the second organic compound form and exciplex which exhibits thermally activated delayed fluorescence, and wherein, in the exciplex, a difference between levels of a triplet excited state and a singlet excited state is 0.2 eV or less.
- 11. The light-emitting element according to claim 10. wherein light emission of the exciplex is overlapped with an absorption band on a lowest energy side of the fluorescent material.
- 12. The light-emitting element according to claim 11, wherein a difference in energy between a peak wavelength of the absorption band on the lowest energy side of the fluorescent material and a peak wavelength of the exciplex is 0.2 eV
- 13. The light-emitting element according to claim 11, wherein a peak wavelength of light emission of the exciplex is longer than or equal to a peak wavelength of the absorption band on the lowest energy side of the fluorescent material.
- 14. The light-emitting element according to claim 11, 2. The light-emitting element according to claim 1, 55 wherein a difference between a peak wavelength of light emission of the exciplex and a peak wavelength of light emission of the fluorescent material is 30 nm or less.
 - 15. The light-emitting element according to claim 10, wherein one of the first organic compound and the second organic compound is a material having an electron-transport property and the other is a material having a hole-transport property.
 - 16. The light-emitting element according to claim 10, wherein one of the first organic compound and the second organic compound is a π -electron deficient heteroaromatic compound and the other is a π -electron rich heteroaromatic compound or an aromatic amine compound.

10

17. The light-emitting element according to claim 10, wherein the first organic compound is different from the second organic compound.

18. The light-emitting element according to claim 10, wherein the exciplex generates the singlet excited state 5 from the triplet excited state, and

wherein an energy is transferred to from a level of the singlet excited state of the exciplex to a level of a single exited state of the fluorescent material.

* * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,276,228 B2 Page 1 of 2

APPLICATION NO. : 13/957612

DATED : March 1, 2016

INVENTOR(S) : Satoshi Seo et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification:

Column 3, Line 9; Change "of thermally" to -- of the thermally--.

Column 3, Line 44; Change "thermally activated" to --the thermally activated--.

Column 6, Line 42; Change "of thermally" to --of the thermally--.

Column 11, Line 15; Change "N,N-bis" to --N,N'-bis--.

Column 11, Line 16; Change "N,N-diphenyl" to --N,N'-diphenyl--.

Column 11, Line 28; Change "[N,N',N-triphenyl" to --[N,N',N'-triphenyl--.

Column 11, Line 31; Change "N,N,N-triphenyl" to --N,N',N'-triphenyl--.

Column 11, Line 58; Change "DCJTB)," to --DCJTI),--.

Column 14, Line 48; Change "charbazol-1'-yl)" to --charbazol-11-yl)--.

Column 15, Line 55; Change "BAIq)," to --BAlq),--.

Column 23, Line 37; Change "N,Y-diphenyl" to --N,N'-diphenyl--.

Column 26, Line 39; Change "aluminum Note" to --aluminum. Note--.

Column 27, Line 62; Change "10248, 10246" to --1024R, 1024G--.

Column 29, Line 7; Change "1034E and" to --1034G, and--.

Column 35, Line 35; Change "(LW)" to --(LiF)--.

Column 35, Line 48 to 49; Change "30 nm Components" to --30 nm. Components--.

Column 36, Line 37; Change "(hn/W)," to --(lm/W),--.

Column 37, Line 33; Change "(trivial name-rubrene)." to --(trivial name: rubrene).--.

Column 37, Line 39; Change "fluor en" to --fluoren--.

Column 40, Line 65; Change "OE chromaticity" to --CIE chromaticity--.

Column 40, Line 67; Change "CW chromaticity" to --CIE chromaticity--.

Signed and Sealed this Sixth Day of September, 2016

Michelle K. Lee

Michelle K. Lee Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 9,276,228 B2

In the Specification:

Column 42, Line 4; Change "fluor en" to --fluoren--.

Column 45, Line 2; Change "fluor en" to --fluoren--.

Column 45, Line 49; Change "40 nm Components" to --40 nm. Components--.

In the Claims:

Column 48, Line 12, Claim 7; Change "n-electron" to $-\pi$ -electron--.

Column 48, Line 13, Claim 7; Change "n-electron" to $--\pi$ -electron--.

Column 48, Line 35, Claim 10; Change "organic compound, wherein the first organic compound" to --organic compound,

wherein the first organic compound--.

Column 48, Line 38, Claim 10; Change "fluorescence, and wherein, in the exciplex, a difference" to

--fluorescence, and

wherein, in the exciplex, a difference--.